Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold

Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2018-11, Vol.182, p.299-311
Hauptverfasser: Ng, Soon Seng, Saeb-Parsy, Kourosh, Blackford, Samuel J.I., Segal, Joe M., Serra, Maria Paola, Horcas-Lopez, Marta, No, Da Yoon, Mastoridis, Sotiris, Jassem, Wayel, Frank, Curtis W., Cho, Nam Joon, Nakauchi, Hiromitsu, Glenn, Jeffrey S., Rashid, S. Tamir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue
container_start_page 299
container_title Biomaterials
container_volume 182
creator Ng, Soon Seng
Saeb-Parsy, Kourosh
Blackford, Samuel J.I.
Segal, Joe M.
Serra, Maria Paola
Horcas-Lopez, Marta
No, Da Yoon
Mastoridis, Sotiris
Jassem, Wayel
Frank, Curtis W.
Cho, Nam Joon
Nakauchi, Hiromitsu
Glenn, Jeffrey S.
Rashid, S. Tamir
description Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 μm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFβ and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.
doi_str_mv 10.1016/j.biomaterials.2018.07.043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6131727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961218305283</els_id><sourcerecordid>2131847103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-28a2d314e1b2e733e832c5d44772da0f415e4505834e38825a29a143c4a806253</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEokPhLyCLVVkk-Jk4LJCq8ihSJZCAteWxb1KPHHuwk5Gy54fj0ZSqrGBlW-e7597rU1WvCG4IJu2bXbN1cdIzJKd9bigmssFdgzl7VG2I7GQteiweVxtMOK37ltCz6lnOO1zemNOn1Rkrt562dFP9ul4mHZD7-g3Z4ncAi_YpjhDcHFNGpRGE0QWAVBQX5oh8gRKKadQhOpvRkl0Y0dEjFGEumIneF0l7ZNKa53Luo1_RBcy3q4cAaPRrYV6jbPQwRG-fV0-Gsgm8uDvPqx8fP3y_uq5vvnz6fHV5UxtB8VxTqallhAPZUugYA8moEZbzrqNW44ETAVxgIRkHJiUVmvaacGa4lrilgp1X706--2U7gTUQ5qS92ic36bSqqJ36WwnuVo3xoFrCSEe7YnBxZ5DizwXyrCaXDXivA8QlK1o4yTuC2b9R3AtRpiV9Qd-eUJNizgmG-4kIVsfE1U49TFwdE1e4UyXxUvzy4U73pX8iLsD7EwDlZw8OksrGQTBgXQIzKxvd__T5DdMGxmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095545019</pqid></control><display><type>article</type><title>Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Ng, Soon Seng ; Saeb-Parsy, Kourosh ; Blackford, Samuel J.I. ; Segal, Joe M. ; Serra, Maria Paola ; Horcas-Lopez, Marta ; No, Da Yoon ; Mastoridis, Sotiris ; Jassem, Wayel ; Frank, Curtis W. ; Cho, Nam Joon ; Nakauchi, Hiromitsu ; Glenn, Jeffrey S. ; Rashid, S. Tamir</creator><creatorcontrib>Ng, Soon Seng ; Saeb-Parsy, Kourosh ; Blackford, Samuel J.I. ; Segal, Joe M. ; Serra, Maria Paola ; Horcas-Lopez, Marta ; No, Da Yoon ; Mastoridis, Sotiris ; Jassem, Wayel ; Frank, Curtis W. ; Cho, Nam Joon ; Nakauchi, Hiromitsu ; Glenn, Jeffrey S. ; Rashid, S. Tamir</creatorcontrib><description>Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 μm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFβ and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2018.07.043</identifier><identifier>PMID: 30149262</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adults ; Biocompatible Materials - chemistry ; Bioengineering ; Biomimetic materials ; cell lines ; Cells, Cultured ; collagen ; Crystallization ; gene expression ; human development ; Humans ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; liver ; Liver - cytology ; Liver stem cells ; mechanical properties ; mice ; Organogenesis ; Organoids - cytology ; pharmacokinetics ; polyethylene glycol ; Polyethylene Glycols - chemistry ; protein secretion ; signal transduction ; therapeutics ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; transforming growth factor beta</subject><ispartof>Biomaterials, 2018-11, Vol.182, p.299-311</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-28a2d314e1b2e733e832c5d44772da0f415e4505834e38825a29a143c4a806253</citedby><cites>FETCH-LOGICAL-c520t-28a2d314e1b2e733e832c5d44772da0f415e4505834e38825a29a143c4a806253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2018.07.043$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30149262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Soon Seng</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Blackford, Samuel J.I.</creatorcontrib><creatorcontrib>Segal, Joe M.</creatorcontrib><creatorcontrib>Serra, Maria Paola</creatorcontrib><creatorcontrib>Horcas-Lopez, Marta</creatorcontrib><creatorcontrib>No, Da Yoon</creatorcontrib><creatorcontrib>Mastoridis, Sotiris</creatorcontrib><creatorcontrib>Jassem, Wayel</creatorcontrib><creatorcontrib>Frank, Curtis W.</creatorcontrib><creatorcontrib>Cho, Nam Joon</creatorcontrib><creatorcontrib>Nakauchi, Hiromitsu</creatorcontrib><creatorcontrib>Glenn, Jeffrey S.</creatorcontrib><creatorcontrib>Rashid, S. Tamir</creatorcontrib><title>Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 μm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFβ and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.</description><subject>adults</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioengineering</subject><subject>Biomimetic materials</subject><subject>cell lines</subject><subject>Cells, Cultured</subject><subject>collagen</subject><subject>Crystallization</subject><subject>gene expression</subject><subject>human development</subject><subject>Humans</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>liver</subject><subject>Liver - cytology</subject><subject>Liver stem cells</subject><subject>mechanical properties</subject><subject>mice</subject><subject>Organogenesis</subject><subject>Organoids - cytology</subject><subject>pharmacokinetics</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>protein secretion</subject><subject>signal transduction</subject><subject>therapeutics</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>transforming growth factor beta</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhSMEokPhLyCLVVkk-Jk4LJCq8ihSJZCAteWxb1KPHHuwk5Gy54fj0ZSqrGBlW-e7597rU1WvCG4IJu2bXbN1cdIzJKd9bigmssFdgzl7VG2I7GQteiweVxtMOK37ltCz6lnOO1zemNOn1Rkrt562dFP9ul4mHZD7-g3Z4ncAi_YpjhDcHFNGpRGE0QWAVBQX5oh8gRKKadQhOpvRkl0Y0dEjFGEumIneF0l7ZNKa53Luo1_RBcy3q4cAaPRrYV6jbPQwRG-fV0-Gsgm8uDvPqx8fP3y_uq5vvnz6fHV5UxtB8VxTqallhAPZUugYA8moEZbzrqNW44ETAVxgIRkHJiUVmvaacGa4lrilgp1X706--2U7gTUQ5qS92ic36bSqqJ36WwnuVo3xoFrCSEe7YnBxZ5DizwXyrCaXDXivA8QlK1o4yTuC2b9R3AtRpiV9Qd-eUJNizgmG-4kIVsfE1U49TFwdE1e4UyXxUvzy4U73pX8iLsD7EwDlZw8OksrGQTBgXQIzKxvd__T5DdMGxmg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Ng, Soon Seng</creator><creator>Saeb-Parsy, Kourosh</creator><creator>Blackford, Samuel J.I.</creator><creator>Segal, Joe M.</creator><creator>Serra, Maria Paola</creator><creator>Horcas-Lopez, Marta</creator><creator>No, Da Yoon</creator><creator>Mastoridis, Sotiris</creator><creator>Jassem, Wayel</creator><creator>Frank, Curtis W.</creator><creator>Cho, Nam Joon</creator><creator>Nakauchi, Hiromitsu</creator><creator>Glenn, Jeffrey S.</creator><creator>Rashid, S. Tamir</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201811</creationdate><title>Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold</title><author>Ng, Soon Seng ; Saeb-Parsy, Kourosh ; Blackford, Samuel J.I. ; Segal, Joe M. ; Serra, Maria Paola ; Horcas-Lopez, Marta ; No, Da Yoon ; Mastoridis, Sotiris ; Jassem, Wayel ; Frank, Curtis W. ; Cho, Nam Joon ; Nakauchi, Hiromitsu ; Glenn, Jeffrey S. ; Rashid, S. Tamir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-28a2d314e1b2e733e832c5d44772da0f415e4505834e38825a29a143c4a806253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adults</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioengineering</topic><topic>Biomimetic materials</topic><topic>cell lines</topic><topic>Cells, Cultured</topic><topic>collagen</topic><topic>Crystallization</topic><topic>gene expression</topic><topic>human development</topic><topic>Humans</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>liver</topic><topic>Liver - cytology</topic><topic>Liver stem cells</topic><topic>mechanical properties</topic><topic>mice</topic><topic>Organogenesis</topic><topic>Organoids - cytology</topic><topic>pharmacokinetics</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>protein secretion</topic><topic>signal transduction</topic><topic>therapeutics</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>transforming growth factor beta</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Soon Seng</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Blackford, Samuel J.I.</creatorcontrib><creatorcontrib>Segal, Joe M.</creatorcontrib><creatorcontrib>Serra, Maria Paola</creatorcontrib><creatorcontrib>Horcas-Lopez, Marta</creatorcontrib><creatorcontrib>No, Da Yoon</creatorcontrib><creatorcontrib>Mastoridis, Sotiris</creatorcontrib><creatorcontrib>Jassem, Wayel</creatorcontrib><creatorcontrib>Frank, Curtis W.</creatorcontrib><creatorcontrib>Cho, Nam Joon</creatorcontrib><creatorcontrib>Nakauchi, Hiromitsu</creatorcontrib><creatorcontrib>Glenn, Jeffrey S.</creatorcontrib><creatorcontrib>Rashid, S. Tamir</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Soon Seng</au><au>Saeb-Parsy, Kourosh</au><au>Blackford, Samuel J.I.</au><au>Segal, Joe M.</au><au>Serra, Maria Paola</au><au>Horcas-Lopez, Marta</au><au>No, Da Yoon</au><au>Mastoridis, Sotiris</au><au>Jassem, Wayel</au><au>Frank, Curtis W.</au><au>Cho, Nam Joon</au><au>Nakauchi, Hiromitsu</au><au>Glenn, Jeffrey S.</au><au>Rashid, S. Tamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2018-11</date><risdate>2018</risdate><volume>182</volume><spage>299</spage><epage>311</epage><pages>299-311</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 μm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFβ and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30149262</pmid><doi>10.1016/j.biomaterials.2018.07.043</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2018-11, Vol.182, p.299-311
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6131727
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects adults
Biocompatible Materials - chemistry
Bioengineering
Biomimetic materials
cell lines
Cells, Cultured
collagen
Crystallization
gene expression
human development
Humans
induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
liver
Liver - cytology
Liver stem cells
mechanical properties
mice
Organogenesis
Organoids - cytology
pharmacokinetics
polyethylene glycol
Polyethylene Glycols - chemistry
protein secretion
signal transduction
therapeutics
Tissue Engineering - methods
Tissue Scaffolds - chemistry
transforming growth factor beta
title Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20iPS%20derived%20progenitors%20bioengineered%20into%20liver%20organoids%20using%20an%20inverted%20colloidal%20crystal%20poly%20(ethylene%20glycol)%20scaffold&rft.jtitle=Biomaterials&rft.au=Ng,%20Soon%20Seng&rft.date=2018-11&rft.volume=182&rft.spage=299&rft.epage=311&rft.pages=299-311&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2018.07.043&rft_dat=%3Cproquest_pubme%3E2131847103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095545019&rft_id=info:pmid/30149262&rft_els_id=S0142961218305283&rfr_iscdi=true