pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks
Abstract Summary Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to ut...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2018-09, Vol.34 (17), p.3035-3037 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3037 |
---|---|
container_issue | 17 |
container_start_page | 3035 |
container_title | Bioinformatics |
container_volume | 34 |
creator | Budach, Stefan Marsico, Annalisa |
description | Abstract
Summary
Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.
Availability and implementation
pysster is freely available at https://github.com/budach/pysster.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty222</oup_id><sourcerecordid>2026410205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ae245b63e84e4d3b5f78f0c3d01b9bd14cc97e9087bad4d24b8593878e7e1cbe3</originalsourceid><addsrcrecordid>eNqNkctuFTEMhiMEoqXwCKAs2QzNbS5hgYQqblIlNnQdJRnPaWAmOcSZVkfqwzftKUftjpUt5_dnxz8hbzn7wJmWpy6kEKeUF1uCx1NXdkKIZ-SYq441grX6ec1l1zdqYPKIvEL8zVjLlVIvyZHQXat7ro_JzXaHWCB_pH62iGEKvgJTpGmidcScNrUwU4S_K0QPSN2OzmBzDHFzqFIbR4olr76sGeiSSpiQXodySX2KV2le75AVE2HN96Fcp_wHX5MXk50R3jzEE3Lx9cuvs-_N-c9vP84-nzdetaI0FoRqXSdhUKBG6dqpHybm5ci4027kynvdg2ZD7-yoRqHc0Go59AP0wL0DeUI-7bnb1S0weoilrmG2OSw270yywTx9ieHSbNKV6bjQkskKeP8AyKl-GYtZAnqYZxshrWgEE53irJ69Stu91OeEmGE6jOHM3Dlnnjpn9s7VvnePdzx0_bOqCthekNbtfzJvASk_ses</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026410205</pqid></control><display><type>article</type><title>pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks</title><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Budach, Stefan ; Marsico, Annalisa</creator><contributor>Hancock, John</contributor><creatorcontrib>Budach, Stefan ; Marsico, Annalisa ; Hancock, John</creatorcontrib><description>Abstract
Summary
Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.
Availability and implementation
pysster is freely available at https://github.com/budach/pysster.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty222</identifier><identifier>PMID: 29659719</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics, 2018-09, Vol.34 (17), p.3035-3037</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ae245b63e84e4d3b5f78f0c3d01b9bd14cc97e9087bad4d24b8593878e7e1cbe3</citedby><cites>FETCH-LOGICAL-c452t-ae245b63e84e4d3b5f78f0c3d01b9bd14cc97e9087bad4d24b8593878e7e1cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,1605,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29659719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hancock, John</contributor><creatorcontrib>Budach, Stefan</creatorcontrib><creatorcontrib>Marsico, Annalisa</creatorcontrib><title>pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Summary
Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.
Availability and implementation
pysster is freely available at https://github.com/budach/pysster.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkctuFTEMhiMEoqXwCKAs2QzNbS5hgYQqblIlNnQdJRnPaWAmOcSZVkfqwzftKUftjpUt5_dnxz8hbzn7wJmWpy6kEKeUF1uCx1NXdkKIZ-SYq441grX6ec1l1zdqYPKIvEL8zVjLlVIvyZHQXat7ro_JzXaHWCB_pH62iGEKvgJTpGmidcScNrUwU4S_K0QPSN2OzmBzDHFzqFIbR4olr76sGeiSSpiQXodySX2KV2le75AVE2HN96Fcp_wHX5MXk50R3jzEE3Lx9cuvs-_N-c9vP84-nzdetaI0FoRqXSdhUKBG6dqpHybm5ci4027kynvdg2ZD7-yoRqHc0Go59AP0wL0DeUI-7bnb1S0weoilrmG2OSw270yywTx9ieHSbNKV6bjQkskKeP8AyKl-GYtZAnqYZxshrWgEE53irJ69Stu91OeEmGE6jOHM3Dlnnjpn9s7VvnePdzx0_bOqCthekNbtfzJvASk_ses</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Budach, Stefan</creator><creator>Marsico, Annalisa</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks</title><author>Budach, Stefan ; Marsico, Annalisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ae245b63e84e4d3b5f78f0c3d01b9bd14cc97e9087bad4d24b8593878e7e1cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budach, Stefan</creatorcontrib><creatorcontrib>Marsico, Annalisa</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budach, Stefan</au><au>Marsico, Annalisa</au><au>Hancock, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>34</volume><issue>17</issue><spage>3035</spage><epage>3037</epage><pages>3035-3037</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Summary
Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.
Availability and implementation
pysster is freely available at https://github.com/budach/pysster.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29659719</pmid><doi>10.1093/bioinformatics/bty222</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2018-09, Vol.34 (17), p.3035-3037 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129303 |
source | Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Applications Notes |
title | pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pysster:%20classification%20of%20biological%20sequences%20by%20learning%20sequence%20and%20structure%20motifs%20with%20convolutional%20neural%20networks&rft.jtitle=Bioinformatics&rft.au=Budach,%20Stefan&rft.date=2018-09-01&rft.volume=34&rft.issue=17&rft.spage=3035&rft.epage=3037&rft.pages=3035-3037&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty222&rft_dat=%3Cproquest_pubme%3E2026410205%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026410205&rft_id=info:pmid/29659719&rft_oup_id=10.1093/bioinformatics/bty222&rfr_iscdi=true |