Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors
T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-09, Vol.24 (9), p.1459-1468 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1468 |
---|---|
container_issue | 9 |
container_start_page | 1459 |
container_title | Nature medicine |
container_volume | 24 |
creator | Chongsathidkiet, Pakawat Jackson, Christina Koyama, Shohei Loebel, Franziska Cui, Xiuyu Farber, S. Harrison Woroniecka, Karolina Elsamadicy, Aladine A. Dechant, Cosette A. Kemeny, Hanna R. Sanchez-Perez, Luis Cheema, Tooba A. Souders, Nicholas C. Herndon, James E. Coumans, Jean-Valery Everitt, Jeffrey I. Nahed, Brian V. Sampson, John H. Gunn, Michael D. Martuza, Robert L. Dranoff, Glenn Curry, William T. Fecci, Peter E. |
description | T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.
Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics. |
doi_str_mv | 10.1038/s41591-018-0135-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603523</galeid><sourcerecordid>A572603523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</originalsourceid><addsrcrecordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6DxJmzR9I4zhw2AwcFN8F3Lb096MNplJ6sO399Q7t125ggkhT7_zJznnn2VPGRwyKNXrWDHRsAKYolGKgt_L9pmoZMFq-HKf1lCrQjVC7mWPYrwEgBJE8zDbK4FBVUu5n3Xn-HXGmIJJ1rvc9_lF3uI4xty6fOUd5pMJwX9ftmmNecSUrBsWcBitX40mJj-Z3Lgu9wQEAkmsDcZZM-ZpnnyIj7MHvRkjPrmeD7JP795eHH8oTs_enxwfnRatrKtU9E3ddKxDJZqqViihrVRPratkCdDUqBpVtkLSiVBVL9nKCNGZjpsVKIZQHmRvNrpX82rCrsXlKaO-CpY-8VN7Y_X2jbNrPfhvWjLecJAk8PJaIPjfadGTjUs6jEM_R81BKd6UAipCn_-FXvo5OPqe5gxAESPLW2owI2rrer8kZxHVR6LmEkrBF6rYQQ3okB5JNegtHW_xhzt46h1Ott0Z8GorgJiEP9Jg5hj1yfnH_2fPPm-zL-6wazRjWkc_zouX4jbINmAbfIwB-5uiMNCLl_XGy5q8rBcva04xz-5W8ybij3kJ4Bsg0pUbMNyW4N-qvwBubPvL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100850463</pqid></control><display><type>article</type><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</creator><creatorcontrib>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</creatorcontrib><description>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.
Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0135-2</identifier><identifier>PMID: 30104766</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/251/1574 ; 631/250/371 ; 631/67/1922 ; 631/67/580/1884/2323 ; Acquired immune deficiency syndrome ; AIDS ; AIDS (Disease) ; Animal models ; Animals ; B cells ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; Bone Marrow - immunology ; Bone tumors ; Brain cancer ; Brain Neoplasms - immunology ; Brain Neoplasms - pathology ; Brain tumors ; Cancer ; Cancer Research ; Care and treatment ; CD4 antigen ; Cell surface ; Endocytosis ; Glioblastoma ; Glioblastoma - immunology ; Glioblastoma - pathology ; Glioblastomas ; Gliomas ; Health aspects ; Humans ; Immunotherapy ; Infectious Diseases ; Internalization ; Licenses ; Lymphocytes ; Lymphocytes T ; Lymphocytopenia ; Lymphoid Tissue - pathology ; Lymphopenia ; Lymphopenia - immunology ; Lysophospholipids - metabolism ; Medical schools ; Metabolic Diseases ; Mice, Inbred C57BL ; Molecular Medicine ; Neurosciences ; Organs ; Sphingosine - analogs & derivatives ; Sphingosine - metabolism ; Spleen - pathology ; T cells ; T-Lymphocytes - immunology ; Tumors</subject><ispartof>Nature medicine, 2018-09, Vol.24 (9), p.1459-1468</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</citedby><cites>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</cites><orcidid>0000-0003-4602-0667 ; 0000-0001-5363-3061 ; 0000-0002-0171-6516 ; 0000-0002-6897-9417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0135-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0135-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chongsathidkiet, Pakawat</creatorcontrib><creatorcontrib>Jackson, Christina</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Loebel, Franziska</creatorcontrib><creatorcontrib>Cui, Xiuyu</creatorcontrib><creatorcontrib>Farber, S. Harrison</creatorcontrib><creatorcontrib>Woroniecka, Karolina</creatorcontrib><creatorcontrib>Elsamadicy, Aladine A.</creatorcontrib><creatorcontrib>Dechant, Cosette A.</creatorcontrib><creatorcontrib>Kemeny, Hanna R.</creatorcontrib><creatorcontrib>Sanchez-Perez, Luis</creatorcontrib><creatorcontrib>Cheema, Tooba A.</creatorcontrib><creatorcontrib>Souders, Nicholas C.</creatorcontrib><creatorcontrib>Herndon, James E.</creatorcontrib><creatorcontrib>Coumans, Jean-Valery</creatorcontrib><creatorcontrib>Everitt, Jeffrey I.</creatorcontrib><creatorcontrib>Nahed, Brian V.</creatorcontrib><creatorcontrib>Sampson, John H.</creatorcontrib><creatorcontrib>Gunn, Michael D.</creatorcontrib><creatorcontrib>Martuza, Robert L.</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Curry, William T.</creatorcontrib><creatorcontrib>Fecci, Peter E.</creatorcontrib><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.
Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</description><subject>631/250/251/1574</subject><subject>631/250/371</subject><subject>631/67/1922</subject><subject>631/67/580/1884/2323</subject><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>AIDS (Disease)</subject><subject>Animal models</subject><subject>Animals</subject><subject>B cells</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>Bone Marrow - immunology</subject><subject>Bone tumors</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>CD4 antigen</subject><subject>Cell surface</subject><subject>Endocytosis</subject><subject>Glioblastoma</subject><subject>Glioblastoma - immunology</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastomas</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infectious Diseases</subject><subject>Internalization</subject><subject>Licenses</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytopenia</subject><subject>Lymphoid Tissue - pathology</subject><subject>Lymphopenia</subject><subject>Lymphopenia - immunology</subject><subject>Lysophospholipids - metabolism</subject><subject>Medical schools</subject><subject>Metabolic Diseases</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Organs</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine - metabolism</subject><subject>Spleen - pathology</subject><subject>T cells</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6DxJmzR9I4zhw2AwcFN8F3Lb096MNplJ6sO399Q7t125ggkhT7_zJznnn2VPGRwyKNXrWDHRsAKYolGKgt_L9pmoZMFq-HKf1lCrQjVC7mWPYrwEgBJE8zDbK4FBVUu5n3Xn-HXGmIJJ1rvc9_lF3uI4xty6fOUd5pMJwX9ftmmNecSUrBsWcBitX40mJj-Z3Lgu9wQEAkmsDcZZM-ZpnnyIj7MHvRkjPrmeD7JP795eHH8oTs_enxwfnRatrKtU9E3ddKxDJZqqViihrVRPratkCdDUqBpVtkLSiVBVL9nKCNGZjpsVKIZQHmRvNrpX82rCrsXlKaO-CpY-8VN7Y_X2jbNrPfhvWjLecJAk8PJaIPjfadGTjUs6jEM_R81BKd6UAipCn_-FXvo5OPqe5gxAESPLW2owI2rrer8kZxHVR6LmEkrBF6rYQQ3okB5JNegtHW_xhzt46h1Ott0Z8GorgJiEP9Jg5hj1yfnH_2fPPm-zL-6wazRjWkc_zouX4jbINmAbfIwB-5uiMNCLl_XGy5q8rBcva04xz-5W8ybij3kJ4Bsg0pUbMNyW4N-qvwBubPvL</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Chongsathidkiet, Pakawat</creator><creator>Jackson, Christina</creator><creator>Koyama, Shohei</creator><creator>Loebel, Franziska</creator><creator>Cui, Xiuyu</creator><creator>Farber, S. Harrison</creator><creator>Woroniecka, Karolina</creator><creator>Elsamadicy, Aladine A.</creator><creator>Dechant, Cosette A.</creator><creator>Kemeny, Hanna R.</creator><creator>Sanchez-Perez, Luis</creator><creator>Cheema, Tooba A.</creator><creator>Souders, Nicholas C.</creator><creator>Herndon, James E.</creator><creator>Coumans, Jean-Valery</creator><creator>Everitt, Jeffrey I.</creator><creator>Nahed, Brian V.</creator><creator>Sampson, John H.</creator><creator>Gunn, Michael D.</creator><creator>Martuza, Robert L.</creator><creator>Dranoff, Glenn</creator><creator>Curry, William T.</creator><creator>Fecci, Peter E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4602-0667</orcidid><orcidid>https://orcid.org/0000-0001-5363-3061</orcidid><orcidid>https://orcid.org/0000-0002-0171-6516</orcidid><orcidid>https://orcid.org/0000-0002-6897-9417</orcidid></search><sort><creationdate>20180901</creationdate><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><author>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/250/251/1574</topic><topic>631/250/371</topic><topic>631/67/1922</topic><topic>631/67/580/1884/2323</topic><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>AIDS (Disease)</topic><topic>Animal models</topic><topic>Animals</topic><topic>B cells</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>Bone Marrow - immunology</topic><topic>Bone tumors</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>CD4 antigen</topic><topic>Cell surface</topic><topic>Endocytosis</topic><topic>Glioblastoma</topic><topic>Glioblastoma - immunology</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastomas</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infectious Diseases</topic><topic>Internalization</topic><topic>Licenses</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytopenia</topic><topic>Lymphoid Tissue - pathology</topic><topic>Lymphopenia</topic><topic>Lymphopenia - immunology</topic><topic>Lysophospholipids - metabolism</topic><topic>Medical schools</topic><topic>Metabolic Diseases</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Organs</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine - metabolism</topic><topic>Spleen - pathology</topic><topic>T cells</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chongsathidkiet, Pakawat</creatorcontrib><creatorcontrib>Jackson, Christina</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Loebel, Franziska</creatorcontrib><creatorcontrib>Cui, Xiuyu</creatorcontrib><creatorcontrib>Farber, S. Harrison</creatorcontrib><creatorcontrib>Woroniecka, Karolina</creatorcontrib><creatorcontrib>Elsamadicy, Aladine A.</creatorcontrib><creatorcontrib>Dechant, Cosette A.</creatorcontrib><creatorcontrib>Kemeny, Hanna R.</creatorcontrib><creatorcontrib>Sanchez-Perez, Luis</creatorcontrib><creatorcontrib>Cheema, Tooba A.</creatorcontrib><creatorcontrib>Souders, Nicholas C.</creatorcontrib><creatorcontrib>Herndon, James E.</creatorcontrib><creatorcontrib>Coumans, Jean-Valery</creatorcontrib><creatorcontrib>Everitt, Jeffrey I.</creatorcontrib><creatorcontrib>Nahed, Brian V.</creatorcontrib><creatorcontrib>Sampson, John H.</creatorcontrib><creatorcontrib>Gunn, Michael D.</creatorcontrib><creatorcontrib>Martuza, Robert L.</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Curry, William T.</creatorcontrib><creatorcontrib>Fecci, Peter E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chongsathidkiet, Pakawat</au><au>Jackson, Christina</au><au>Koyama, Shohei</au><au>Loebel, Franziska</au><au>Cui, Xiuyu</au><au>Farber, S. Harrison</au><au>Woroniecka, Karolina</au><au>Elsamadicy, Aladine A.</au><au>Dechant, Cosette A.</au><au>Kemeny, Hanna R.</au><au>Sanchez-Perez, Luis</au><au>Cheema, Tooba A.</au><au>Souders, Nicholas C.</au><au>Herndon, James E.</au><au>Coumans, Jean-Valery</au><au>Everitt, Jeffrey I.</au><au>Nahed, Brian V.</au><au>Sampson, John H.</au><au>Gunn, Michael D.</au><au>Martuza, Robert L.</au><au>Dranoff, Glenn</au><au>Curry, William T.</au><au>Fecci, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>24</volume><issue>9</issue><spage>1459</spage><epage>1468</epage><pages>1459-1468</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.
Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30104766</pmid><doi>10.1038/s41591-018-0135-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4602-0667</orcidid><orcidid>https://orcid.org/0000-0001-5363-3061</orcidid><orcidid>https://orcid.org/0000-0002-0171-6516</orcidid><orcidid>https://orcid.org/0000-0002-6897-9417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2018-09, Vol.24 (9), p.1459-1468 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129206 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/250/251/1574 631/250/371 631/67/1922 631/67/580/1884/2323 Acquired immune deficiency syndrome AIDS AIDS (Disease) Animal models Animals B cells Biomedical and Life Sciences Biomedicine Bone marrow Bone Marrow - immunology Bone tumors Brain cancer Brain Neoplasms - immunology Brain Neoplasms - pathology Brain tumors Cancer Cancer Research Care and treatment CD4 antigen Cell surface Endocytosis Glioblastoma Glioblastoma - immunology Glioblastoma - pathology Glioblastomas Gliomas Health aspects Humans Immunotherapy Infectious Diseases Internalization Licenses Lymphocytes Lymphocytes T Lymphocytopenia Lymphoid Tissue - pathology Lymphopenia Lymphopenia - immunology Lysophospholipids - metabolism Medical schools Metabolic Diseases Mice, Inbred C57BL Molecular Medicine Neurosciences Organs Sphingosine - analogs & derivatives Sphingosine - metabolism Spleen - pathology T cells T-Lymphocytes - immunology Tumors |
title | Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequestration%20of%20T%20cells%20in%20bone%20marrow%20in%20the%20setting%20of%20glioblastoma%20and%20other%20intracranial%20tumors&rft.jtitle=Nature%20medicine&rft.au=Chongsathidkiet,%20Pakawat&rft.date=2018-09-01&rft.volume=24&rft.issue=9&rft.spage=1459&rft.epage=1468&rft.pages=1459-1468&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0135-2&rft_dat=%3Cgale_pubme%3EA572603523%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100850463&rft_id=info:pmid/30104766&rft_galeid=A572603523&rfr_iscdi=true |