Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors

T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2018-09, Vol.24 (9), p.1459-1468
Hauptverfasser: Chongsathidkiet, Pakawat, Jackson, Christina, Koyama, Shohei, Loebel, Franziska, Cui, Xiuyu, Farber, S. Harrison, Woroniecka, Karolina, Elsamadicy, Aladine A., Dechant, Cosette A., Kemeny, Hanna R., Sanchez-Perez, Luis, Cheema, Tooba A., Souders, Nicholas C., Herndon, James E., Coumans, Jean-Valery, Everitt, Jeffrey I., Nahed, Brian V., Sampson, John H., Gunn, Michael D., Martuza, Robert L., Dranoff, Glenn, Curry, William T., Fecci, Peter E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1468
container_issue 9
container_start_page 1459
container_title Nature medicine
container_volume 24
creator Chongsathidkiet, Pakawat
Jackson, Christina
Koyama, Shohei
Loebel, Franziska
Cui, Xiuyu
Farber, S. Harrison
Woroniecka, Karolina
Elsamadicy, Aladine A.
Dechant, Cosette A.
Kemeny, Hanna R.
Sanchez-Perez, Luis
Cheema, Tooba A.
Souders, Nicholas C.
Herndon, James E.
Coumans, Jean-Valery
Everitt, Jeffrey I.
Nahed, Brian V.
Sampson, John H.
Gunn, Michael D.
Martuza, Robert L.
Dranoff, Glenn
Curry, William T.
Fecci, Peter E.
description T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct. Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.
doi_str_mv 10.1038/s41591-018-0135-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603523</galeid><sourcerecordid>A572603523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</originalsourceid><addsrcrecordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6DxJmzR9I4zhw2AwcFN8F3Lb096MNplJ6sO399Q7t125ggkhT7_zJznnn2VPGRwyKNXrWDHRsAKYolGKgt_L9pmoZMFq-HKf1lCrQjVC7mWPYrwEgBJE8zDbK4FBVUu5n3Xn-HXGmIJJ1rvc9_lF3uI4xty6fOUd5pMJwX9ftmmNecSUrBsWcBitX40mJj-Z3Lgu9wQEAkmsDcZZM-ZpnnyIj7MHvRkjPrmeD7JP795eHH8oTs_enxwfnRatrKtU9E3ddKxDJZqqViihrVRPratkCdDUqBpVtkLSiVBVL9nKCNGZjpsVKIZQHmRvNrpX82rCrsXlKaO-CpY-8VN7Y_X2jbNrPfhvWjLecJAk8PJaIPjfadGTjUs6jEM_R81BKd6UAipCn_-FXvo5OPqe5gxAESPLW2owI2rrer8kZxHVR6LmEkrBF6rYQQ3okB5JNegtHW_xhzt46h1Ott0Z8GorgJiEP9Jg5hj1yfnH_2fPPm-zL-6wazRjWkc_zouX4jbINmAbfIwB-5uiMNCLl_XGy5q8rBcva04xz-5W8ybij3kJ4Bsg0pUbMNyW4N-qvwBubPvL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100850463</pqid></control><display><type>article</type><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</creator><creatorcontrib>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</creatorcontrib><description>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct. Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0135-2</identifier><identifier>PMID: 30104766</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/251/1574 ; 631/250/371 ; 631/67/1922 ; 631/67/580/1884/2323 ; Acquired immune deficiency syndrome ; AIDS ; AIDS (Disease) ; Animal models ; Animals ; B cells ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; Bone Marrow - immunology ; Bone tumors ; Brain cancer ; Brain Neoplasms - immunology ; Brain Neoplasms - pathology ; Brain tumors ; Cancer ; Cancer Research ; Care and treatment ; CD4 antigen ; Cell surface ; Endocytosis ; Glioblastoma ; Glioblastoma - immunology ; Glioblastoma - pathology ; Glioblastomas ; Gliomas ; Health aspects ; Humans ; Immunotherapy ; Infectious Diseases ; Internalization ; Licenses ; Lymphocytes ; Lymphocytes T ; Lymphocytopenia ; Lymphoid Tissue - pathology ; Lymphopenia ; Lymphopenia - immunology ; Lysophospholipids - metabolism ; Medical schools ; Metabolic Diseases ; Mice, Inbred C57BL ; Molecular Medicine ; Neurosciences ; Organs ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism ; Spleen - pathology ; T cells ; T-Lymphocytes - immunology ; Tumors</subject><ispartof>Nature medicine, 2018-09, Vol.24 (9), p.1459-1468</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</citedby><cites>FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</cites><orcidid>0000-0003-4602-0667 ; 0000-0001-5363-3061 ; 0000-0002-0171-6516 ; 0000-0002-6897-9417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0135-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0135-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chongsathidkiet, Pakawat</creatorcontrib><creatorcontrib>Jackson, Christina</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Loebel, Franziska</creatorcontrib><creatorcontrib>Cui, Xiuyu</creatorcontrib><creatorcontrib>Farber, S. Harrison</creatorcontrib><creatorcontrib>Woroniecka, Karolina</creatorcontrib><creatorcontrib>Elsamadicy, Aladine A.</creatorcontrib><creatorcontrib>Dechant, Cosette A.</creatorcontrib><creatorcontrib>Kemeny, Hanna R.</creatorcontrib><creatorcontrib>Sanchez-Perez, Luis</creatorcontrib><creatorcontrib>Cheema, Tooba A.</creatorcontrib><creatorcontrib>Souders, Nicholas C.</creatorcontrib><creatorcontrib>Herndon, James E.</creatorcontrib><creatorcontrib>Coumans, Jean-Valery</creatorcontrib><creatorcontrib>Everitt, Jeffrey I.</creatorcontrib><creatorcontrib>Nahed, Brian V.</creatorcontrib><creatorcontrib>Sampson, John H.</creatorcontrib><creatorcontrib>Gunn, Michael D.</creatorcontrib><creatorcontrib>Martuza, Robert L.</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Curry, William T.</creatorcontrib><creatorcontrib>Fecci, Peter E.</creatorcontrib><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct. Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</description><subject>631/250/251/1574</subject><subject>631/250/371</subject><subject>631/67/1922</subject><subject>631/67/580/1884/2323</subject><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>AIDS (Disease)</subject><subject>Animal models</subject><subject>Animals</subject><subject>B cells</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>Bone Marrow - immunology</subject><subject>Bone tumors</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>CD4 antigen</subject><subject>Cell surface</subject><subject>Endocytosis</subject><subject>Glioblastoma</subject><subject>Glioblastoma - immunology</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastomas</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infectious Diseases</subject><subject>Internalization</subject><subject>Licenses</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytopenia</subject><subject>Lymphoid Tissue - pathology</subject><subject>Lymphopenia</subject><subject>Lymphopenia - immunology</subject><subject>Lysophospholipids - metabolism</subject><subject>Medical schools</subject><subject>Metabolic Diseases</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Organs</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><subject>Spleen - pathology</subject><subject>T cells</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6DxJmzR9I4zhw2AwcFN8F3Lb096MNplJ6sO399Q7t125ggkhT7_zJznnn2VPGRwyKNXrWDHRsAKYolGKgt_L9pmoZMFq-HKf1lCrQjVC7mWPYrwEgBJE8zDbK4FBVUu5n3Xn-HXGmIJJ1rvc9_lF3uI4xty6fOUd5pMJwX9ftmmNecSUrBsWcBitX40mJj-Z3Lgu9wQEAkmsDcZZM-ZpnnyIj7MHvRkjPrmeD7JP795eHH8oTs_enxwfnRatrKtU9E3ddKxDJZqqViihrVRPratkCdDUqBpVtkLSiVBVL9nKCNGZjpsVKIZQHmRvNrpX82rCrsXlKaO-CpY-8VN7Y_X2jbNrPfhvWjLecJAk8PJaIPjfadGTjUs6jEM_R81BKd6UAipCn_-FXvo5OPqe5gxAESPLW2owI2rrer8kZxHVR6LmEkrBF6rYQQ3okB5JNegtHW_xhzt46h1Ott0Z8GorgJiEP9Jg5hj1yfnH_2fPPm-zL-6wazRjWkc_zouX4jbINmAbfIwB-5uiMNCLl_XGy5q8rBcva04xz-5W8ybij3kJ4Bsg0pUbMNyW4N-qvwBubPvL</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Chongsathidkiet, Pakawat</creator><creator>Jackson, Christina</creator><creator>Koyama, Shohei</creator><creator>Loebel, Franziska</creator><creator>Cui, Xiuyu</creator><creator>Farber, S. Harrison</creator><creator>Woroniecka, Karolina</creator><creator>Elsamadicy, Aladine A.</creator><creator>Dechant, Cosette A.</creator><creator>Kemeny, Hanna R.</creator><creator>Sanchez-Perez, Luis</creator><creator>Cheema, Tooba A.</creator><creator>Souders, Nicholas C.</creator><creator>Herndon, James E.</creator><creator>Coumans, Jean-Valery</creator><creator>Everitt, Jeffrey I.</creator><creator>Nahed, Brian V.</creator><creator>Sampson, John H.</creator><creator>Gunn, Michael D.</creator><creator>Martuza, Robert L.</creator><creator>Dranoff, Glenn</creator><creator>Curry, William T.</creator><creator>Fecci, Peter E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4602-0667</orcidid><orcidid>https://orcid.org/0000-0001-5363-3061</orcidid><orcidid>https://orcid.org/0000-0002-0171-6516</orcidid><orcidid>https://orcid.org/0000-0002-6897-9417</orcidid></search><sort><creationdate>20180901</creationdate><title>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</title><author>Chongsathidkiet, Pakawat ; Jackson, Christina ; Koyama, Shohei ; Loebel, Franziska ; Cui, Xiuyu ; Farber, S. Harrison ; Woroniecka, Karolina ; Elsamadicy, Aladine A. ; Dechant, Cosette A. ; Kemeny, Hanna R. ; Sanchez-Perez, Luis ; Cheema, Tooba A. ; Souders, Nicholas C. ; Herndon, James E. ; Coumans, Jean-Valery ; Everitt, Jeffrey I. ; Nahed, Brian V. ; Sampson, John H. ; Gunn, Michael D. ; Martuza, Robert L. ; Dranoff, Glenn ; Curry, William T. ; Fecci, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-f979d1de859478e60c48ffffd4630097e8983c56ffd584f61ba55dad2ab081e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/250/251/1574</topic><topic>631/250/371</topic><topic>631/67/1922</topic><topic>631/67/580/1884/2323</topic><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>AIDS (Disease)</topic><topic>Animal models</topic><topic>Animals</topic><topic>B cells</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>Bone Marrow - immunology</topic><topic>Bone tumors</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>CD4 antigen</topic><topic>Cell surface</topic><topic>Endocytosis</topic><topic>Glioblastoma</topic><topic>Glioblastoma - immunology</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastomas</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infectious Diseases</topic><topic>Internalization</topic><topic>Licenses</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytopenia</topic><topic>Lymphoid Tissue - pathology</topic><topic>Lymphopenia</topic><topic>Lymphopenia - immunology</topic><topic>Lysophospholipids - metabolism</topic><topic>Medical schools</topic><topic>Metabolic Diseases</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Organs</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><topic>Spleen - pathology</topic><topic>T cells</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chongsathidkiet, Pakawat</creatorcontrib><creatorcontrib>Jackson, Christina</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Loebel, Franziska</creatorcontrib><creatorcontrib>Cui, Xiuyu</creatorcontrib><creatorcontrib>Farber, S. Harrison</creatorcontrib><creatorcontrib>Woroniecka, Karolina</creatorcontrib><creatorcontrib>Elsamadicy, Aladine A.</creatorcontrib><creatorcontrib>Dechant, Cosette A.</creatorcontrib><creatorcontrib>Kemeny, Hanna R.</creatorcontrib><creatorcontrib>Sanchez-Perez, Luis</creatorcontrib><creatorcontrib>Cheema, Tooba A.</creatorcontrib><creatorcontrib>Souders, Nicholas C.</creatorcontrib><creatorcontrib>Herndon, James E.</creatorcontrib><creatorcontrib>Coumans, Jean-Valery</creatorcontrib><creatorcontrib>Everitt, Jeffrey I.</creatorcontrib><creatorcontrib>Nahed, Brian V.</creatorcontrib><creatorcontrib>Sampson, John H.</creatorcontrib><creatorcontrib>Gunn, Michael D.</creatorcontrib><creatorcontrib>Martuza, Robert L.</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Curry, William T.</creatorcontrib><creatorcontrib>Fecci, Peter E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chongsathidkiet, Pakawat</au><au>Jackson, Christina</au><au>Koyama, Shohei</au><au>Loebel, Franziska</au><au>Cui, Xiuyu</au><au>Farber, S. Harrison</au><au>Woroniecka, Karolina</au><au>Elsamadicy, Aladine A.</au><au>Dechant, Cosette A.</au><au>Kemeny, Hanna R.</au><au>Sanchez-Perez, Luis</au><au>Cheema, Tooba A.</au><au>Souders, Nicholas C.</au><au>Herndon, James E.</au><au>Coumans, Jean-Valery</au><au>Everitt, Jeffrey I.</au><au>Nahed, Brian V.</au><au>Sampson, John H.</au><au>Gunn, Michael D.</au><au>Martuza, Robert L.</au><au>Dranoff, Glenn</au><au>Curry, William T.</au><au>Fecci, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>24</volume><issue>9</issue><spage>1459</spage><epage>1468</epage><pages>1459-1468</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct. Patients with glioblastoma experience lymphopenia and sequestration of T cells in the bone marrow, which is recapitulated in mice with brain tumors, where the reversible nature of this effect is demonstrated by an approach that enables the efficacy of other immunotherapeutics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30104766</pmid><doi>10.1038/s41591-018-0135-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4602-0667</orcidid><orcidid>https://orcid.org/0000-0001-5363-3061</orcidid><orcidid>https://orcid.org/0000-0002-0171-6516</orcidid><orcidid>https://orcid.org/0000-0002-6897-9417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2018-09, Vol.24 (9), p.1459-1468
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129206
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/250/251/1574
631/250/371
631/67/1922
631/67/580/1884/2323
Acquired immune deficiency syndrome
AIDS
AIDS (Disease)
Animal models
Animals
B cells
Biomedical and Life Sciences
Biomedicine
Bone marrow
Bone Marrow - immunology
Bone tumors
Brain cancer
Brain Neoplasms - immunology
Brain Neoplasms - pathology
Brain tumors
Cancer
Cancer Research
Care and treatment
CD4 antigen
Cell surface
Endocytosis
Glioblastoma
Glioblastoma - immunology
Glioblastoma - pathology
Glioblastomas
Gliomas
Health aspects
Humans
Immunotherapy
Infectious Diseases
Internalization
Licenses
Lymphocytes
Lymphocytes T
Lymphocytopenia
Lymphoid Tissue - pathology
Lymphopenia
Lymphopenia - immunology
Lysophospholipids - metabolism
Medical schools
Metabolic Diseases
Mice, Inbred C57BL
Molecular Medicine
Neurosciences
Organs
Sphingosine - analogs & derivatives
Sphingosine - metabolism
Spleen - pathology
T cells
T-Lymphocytes - immunology
Tumors
title Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequestration%20of%20T%20cells%20in%20bone%20marrow%20in%20the%20setting%20of%20glioblastoma%20and%20other%20intracranial%20tumors&rft.jtitle=Nature%20medicine&rft.au=Chongsathidkiet,%20Pakawat&rft.date=2018-09-01&rft.volume=24&rft.issue=9&rft.spage=1459&rft.epage=1468&rft.pages=1459-1468&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0135-2&rft_dat=%3Cgale_pubme%3EA572603523%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100850463&rft_id=info:pmid/30104766&rft_galeid=A572603523&rfr_iscdi=true