Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle

A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the mov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2018-09, Vol.115 (5), p.924-935
Hauptverfasser: Øien, Alf H., Wiig, Helge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 5
container_start_page 924
container_title Biophysical journal
container_volume 115
creator Øien, Alf H.
Wiig, Helge
description A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the movements of fluid and solid tissue elements on the microscopic as well as on the macroscopic level. Effects that occur during variation of hydration due to interaction between expanding glycosaminoglycans (GAGs) and the collagen interstitial matrix of tissue seem to be of major importance. We focus on these interactions that let effects from spherical GAGs expand and contract relative to collagen on the microscopic level as hydration changes and thereby generate a hydration-dependent electrostatic pressure on the extracellular matrix on the microscopic level. This pressure spreads to macroscopic levels and become a key factor for setting up equations of state for skin and skeletal muscle interstitia. The modeling for a combined skeletal muscle and skin tissue is one dimensional, i.e., a flat box that may mimic central transverse parts of tissue with more complex geometry. Incorporating values of GAG and collagen densities and fluid contents of skin and muscle tissues that are of an order of magnitude found in literature into the model gives interstitial hydrostatic pressure- fluid volume relationships for these tissues that agree well with experimental results.
doi_str_mv 10.1016/j.bpj.2018.07.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518309111</els_id><sourcerecordid>2089861105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6179feb78ad3deae020efb46bcc0727b5dbad02c3c24dcb8ef18dd32a06db7113</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvLA3BBOXJJmHESJyskJFQBrdQKRFsuHCz_mbRevM7WTlbq2_RZ-mS4bKngwsUeeb7vG2t-jL1CqBBQvF1VerOqOGBfQVcBb5-wBbYNLwF68ZQtAECUdbNs99iLlFYAyFvA52yvBsRlX4sF-3E6WvIuXBbH4e72u9uOuZgopslNTvni6MZGNbkxlF8jpTRHKr6R__2SrtwmFS4UZz_zoYLNBXmasut0TsbTAXs2KJ_o5cO9zy4-fTw_PCpPvnw-PvxwUpqmxakU2C0H0l2vbG1JEXCgQTdCGwMd73RrtbLATW14Y43uacDe2porEFZ3iPU-e7_L3cx6TdZQmKLychPdWsUbOSon_-0EdyUvx60UyLtGdDngzUNAHK9nSpNcu2TIexVonJPk0C97gQhtluJOauKYUqThcQyCvIciVzJDkfdQJHQyQ8me13__79Hxh0IWvNsJKG9p6yjKZBwFQ9ZFMpO0o_tP_C_nMaD5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089861105</pqid></control><display><type>article</type><title>Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Øien, Alf H. ; Wiig, Helge</creator><creatorcontrib>Øien, Alf H. ; Wiig, Helge</creatorcontrib><description>A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the movements of fluid and solid tissue elements on the microscopic as well as on the macroscopic level. Effects that occur during variation of hydration due to interaction between expanding glycosaminoglycans (GAGs) and the collagen interstitial matrix of tissue seem to be of major importance. We focus on these interactions that let effects from spherical GAGs expand and contract relative to collagen on the microscopic level as hydration changes and thereby generate a hydration-dependent electrostatic pressure on the extracellular matrix on the microscopic level. This pressure spreads to macroscopic levels and become a key factor for setting up equations of state for skin and skeletal muscle interstitia. The modeling for a combined skeletal muscle and skin tissue is one dimensional, i.e., a flat box that may mimic central transverse parts of tissue with more complex geometry. Incorporating values of GAG and collagen densities and fluid contents of skin and muscle tissues that are of an order of magnitude found in literature into the model gives interstitial hydrostatic pressure- fluid volume relationships for these tissues that agree well with experimental results.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.07.025</identifier><identifier>PMID: 30119836</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Systems Biophysics</subject><ispartof>Biophysical journal, 2018-09, Vol.115 (5), p.924-935</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6179feb78ad3deae020efb46bcc0727b5dbad02c3c24dcb8ef18dd32a06db7113</citedby><cites>FETCH-LOGICAL-c451t-6179feb78ad3deae020efb46bcc0727b5dbad02c3c24dcb8ef18dd32a06db7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127467/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349518309111$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30119836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Øien, Alf H.</creatorcontrib><creatorcontrib>Wiig, Helge</creatorcontrib><title>Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the movements of fluid and solid tissue elements on the microscopic as well as on the macroscopic level. Effects that occur during variation of hydration due to interaction between expanding glycosaminoglycans (GAGs) and the collagen interstitial matrix of tissue seem to be of major importance. We focus on these interactions that let effects from spherical GAGs expand and contract relative to collagen on the microscopic level as hydration changes and thereby generate a hydration-dependent electrostatic pressure on the extracellular matrix on the microscopic level. This pressure spreads to macroscopic levels and become a key factor for setting up equations of state for skin and skeletal muscle interstitia. The modeling for a combined skeletal muscle and skin tissue is one dimensional, i.e., a flat box that may mimic central transverse parts of tissue with more complex geometry. Incorporating values of GAG and collagen densities and fluid contents of skin and muscle tissues that are of an order of magnitude found in literature into the model gives interstitial hydrostatic pressure- fluid volume relationships for these tissues that agree well with experimental results.</description><subject>Systems Biophysics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EokvLA3BBOXJJmHESJyskJFQBrdQKRFsuHCz_mbRevM7WTlbq2_RZ-mS4bKngwsUeeb7vG2t-jL1CqBBQvF1VerOqOGBfQVcBb5-wBbYNLwF68ZQtAECUdbNs99iLlFYAyFvA52yvBsRlX4sF-3E6WvIuXBbH4e72u9uOuZgopslNTvni6MZGNbkxlF8jpTRHKr6R__2SrtwmFS4UZz_zoYLNBXmasut0TsbTAXs2KJ_o5cO9zy4-fTw_PCpPvnw-PvxwUpqmxakU2C0H0l2vbG1JEXCgQTdCGwMd73RrtbLATW14Y43uacDe2porEFZ3iPU-e7_L3cx6TdZQmKLychPdWsUbOSon_-0EdyUvx60UyLtGdDngzUNAHK9nSpNcu2TIexVonJPk0C97gQhtluJOauKYUqThcQyCvIciVzJDkfdQJHQyQ8me13__79Hxh0IWvNsJKG9p6yjKZBwFQ9ZFMpO0o_tP_C_nMaD5</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Øien, Alf H.</creator><creator>Wiig, Helge</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180904</creationdate><title>Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle</title><author>Øien, Alf H. ; Wiig, Helge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6179feb78ad3deae020efb46bcc0727b5dbad02c3c24dcb8ef18dd32a06db7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Systems Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Øien, Alf H.</creatorcontrib><creatorcontrib>Wiig, Helge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Øien, Alf H.</au><au>Wiig, Helge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>924</spage><epage>935</epage><pages>924-935</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the movements of fluid and solid tissue elements on the microscopic as well as on the macroscopic level. Effects that occur during variation of hydration due to interaction between expanding glycosaminoglycans (GAGs) and the collagen interstitial matrix of tissue seem to be of major importance. We focus on these interactions that let effects from spherical GAGs expand and contract relative to collagen on the microscopic level as hydration changes and thereby generate a hydration-dependent electrostatic pressure on the extracellular matrix on the microscopic level. This pressure spreads to macroscopic levels and become a key factor for setting up equations of state for skin and skeletal muscle interstitia. The modeling for a combined skeletal muscle and skin tissue is one dimensional, i.e., a flat box that may mimic central transverse parts of tissue with more complex geometry. Incorporating values of GAG and collagen densities and fluid contents of skin and muscle tissues that are of an order of magnitude found in literature into the model gives interstitial hydrostatic pressure- fluid volume relationships for these tissues that agree well with experimental results.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30119836</pmid><doi>10.1016/j.bpj.2018.07.025</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-09, Vol.115 (5), p.924-935
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127467
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Systems Biophysics
title Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20In%C2%A0Vivo%20Interstitial%20Hydration-Pressure%20Relationships%20in%20Skin%20and%20Skeletal%20Muscle&rft.jtitle=Biophysical%20journal&rft.au=%C3%98ien,%20Alf%20H.&rft.date=2018-09-04&rft.volume=115&rft.issue=5&rft.spage=924&rft.epage=935&rft.pages=924-935&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.07.025&rft_dat=%3Cproquest_pubme%3E2089861105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089861105&rft_id=info:pmid/30119836&rft_els_id=S0006349518309111&rfr_iscdi=true