Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging
The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we s...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2018-09, Vol.115 (5), p.911-923 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 923 |
---|---|
container_issue | 5 |
container_start_page | 911 |
container_title | Biophysical journal |
container_volume | 115 |
creator | Schlüßler, Raimund Möllmert, Stephanie Abuhattum, Shada Cojoc, Gheorghe Müller, Paul Kim, Kyoohyun Möckel, Conrad Zimmermann, Conrad Czarske, Jürgen Guck, Jochen |
description | The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes. |
doi_str_mv | 10.1016/j.bpj.2018.07.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518309135</els_id><sourcerecordid>2090331737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCD-CCfOSSMHZixxES0m4FZaWukPi4cLEce9K6SuOsnRbtv8dVlxVcOHlkP_POyA8hrxmUDJh8tyu7aVdyYKqEpgTePCELJmpeACj5lCwAQBZV3YoL8iKlHQDjAthzclHlivOWLYi9Rbs1o7dmoLdmmvy4oaGn33KRb5YhOrqK4de8pWZ09CtOxkfqR7r2xxP6E7toep-2dG3i0SDt7ul19MMQDhm62ZtNpl6SZ70ZEr56OC_Jj08fvy8_F-svq5vl1bqwtWBzoVrZCdsqUXHTViCFbEWPTsmmdnnhzvJaoGqVEoDgmO0RlcMGQMjMCVNdkg_n3OnQ7dFZHOdoBj1FvzfxXgfj9b8vo9_qTThqyXhTS54D3j4ExHB3wDTrvU8Wh8GMGA5Jc2ihqlhTNRllZ9TGkFLE_nEMA32So3c6y9EnORoaneXknjd_7_fY8cdGBt6fAcy_dPQYdbIeR4vOR7SzdsH_J_43-06f_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090331737</pqid></control><display><type>article</type><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</creator><creatorcontrib>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</creatorcontrib><description>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.07.027</identifier><identifier>PMID: 30122291</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Systems Biophysics</subject><ispartof>Biophysical journal, 2018-09, Vol.115 (5), p.911-923</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</citedby><cites>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127462/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349518309135$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30122291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlüßler, Raimund</creatorcontrib><creatorcontrib>Möllmert, Stephanie</creatorcontrib><creatorcontrib>Abuhattum, Shada</creatorcontrib><creatorcontrib>Cojoc, Gheorghe</creatorcontrib><creatorcontrib>Müller, Paul</creatorcontrib><creatorcontrib>Kim, Kyoohyun</creatorcontrib><creatorcontrib>Möckel, Conrad</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Czarske, Jürgen</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</description><subject>Systems Biophysics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi0EYsvCD-CCfOSSMHZixxES0m4FZaWukPi4cLEce9K6SuOsnRbtv8dVlxVcOHlkP_POyA8hrxmUDJh8tyu7aVdyYKqEpgTePCELJmpeACj5lCwAQBZV3YoL8iKlHQDjAthzclHlivOWLYi9Rbs1o7dmoLdmmvy4oaGn33KRb5YhOrqK4de8pWZ09CtOxkfqR7r2xxP6E7toep-2dG3i0SDt7ul19MMQDhm62ZtNpl6SZ70ZEr56OC_Jj08fvy8_F-svq5vl1bqwtWBzoVrZCdsqUXHTViCFbEWPTsmmdnnhzvJaoGqVEoDgmO0RlcMGQMjMCVNdkg_n3OnQ7dFZHOdoBj1FvzfxXgfj9b8vo9_qTThqyXhTS54D3j4ExHB3wDTrvU8Wh8GMGA5Jc2ihqlhTNRllZ9TGkFLE_nEMA32So3c6y9EnORoaneXknjd_7_fY8cdGBt6fAcy_dPQYdbIeR4vOR7SzdsH_J_43-06f_g</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Schlüßler, Raimund</creator><creator>Möllmert, Stephanie</creator><creator>Abuhattum, Shada</creator><creator>Cojoc, Gheorghe</creator><creator>Müller, Paul</creator><creator>Kim, Kyoohyun</creator><creator>Möckel, Conrad</creator><creator>Zimmermann, Conrad</creator><creator>Czarske, Jürgen</creator><creator>Guck, Jochen</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180904</creationdate><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><author>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Systems Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlüßler, Raimund</creatorcontrib><creatorcontrib>Möllmert, Stephanie</creatorcontrib><creatorcontrib>Abuhattum, Shada</creatorcontrib><creatorcontrib>Cojoc, Gheorghe</creatorcontrib><creatorcontrib>Müller, Paul</creatorcontrib><creatorcontrib>Kim, Kyoohyun</creatorcontrib><creatorcontrib>Möckel, Conrad</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Czarske, Jürgen</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlüßler, Raimund</au><au>Möllmert, Stephanie</au><au>Abuhattum, Shada</au><au>Cojoc, Gheorghe</au><au>Müller, Paul</au><au>Kim, Kyoohyun</au><au>Möckel, Conrad</au><au>Zimmermann, Conrad</au><au>Czarske, Jürgen</au><au>Guck, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>911</spage><epage>923</epage><pages>911-923</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30122291</pmid><doi>10.1016/j.bpj.2018.07.027</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2018-09, Vol.115 (5), p.911-923 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127462 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Systems Biophysics |
title | Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Mapping%20of%20Spinal%20Cord%20Growth%20and%20Repair%20in%20Living%20Zebrafish%20Larvae%20by%20Brillouin%20Imaging&rft.jtitle=Biophysical%20journal&rft.au=Schl%C3%BC%C3%9Fler,%20Raimund&rft.date=2018-09-04&rft.volume=115&rft.issue=5&rft.spage=911&rft.epage=923&rft.pages=911-923&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.07.027&rft_dat=%3Cproquest_pubme%3E2090331737%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090331737&rft_id=info:pmid/30122291&rft_els_id=S0006349518309135&rfr_iscdi=true |