Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging

The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2018-09, Vol.115 (5), p.911-923
Hauptverfasser: Schlüßler, Raimund, Möllmert, Stephanie, Abuhattum, Shada, Cojoc, Gheorghe, Müller, Paul, Kim, Kyoohyun, Möckel, Conrad, Zimmermann, Conrad, Czarske, Jürgen, Guck, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 5
container_start_page 911
container_title Biophysical journal
container_volume 115
creator Schlüßler, Raimund
Möllmert, Stephanie
Abuhattum, Shada
Cojoc, Gheorghe
Müller, Paul
Kim, Kyoohyun
Möckel, Conrad
Zimmermann, Conrad
Czarske, Jürgen
Guck, Jochen
description The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.
doi_str_mv 10.1016/j.bpj.2018.07.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518309135</els_id><sourcerecordid>2090331737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCD-CCfOSSMHZixxES0m4FZaWukPi4cLEce9K6SuOsnRbtv8dVlxVcOHlkP_POyA8hrxmUDJh8tyu7aVdyYKqEpgTePCELJmpeACj5lCwAQBZV3YoL8iKlHQDjAthzclHlivOWLYi9Rbs1o7dmoLdmmvy4oaGn33KRb5YhOrqK4de8pWZ09CtOxkfqR7r2xxP6E7toep-2dG3i0SDt7ul19MMQDhm62ZtNpl6SZ70ZEr56OC_Jj08fvy8_F-svq5vl1bqwtWBzoVrZCdsqUXHTViCFbEWPTsmmdnnhzvJaoGqVEoDgmO0RlcMGQMjMCVNdkg_n3OnQ7dFZHOdoBj1FvzfxXgfj9b8vo9_qTThqyXhTS54D3j4ExHB3wDTrvU8Wh8GMGA5Jc2ihqlhTNRllZ9TGkFLE_nEMA32So3c6y9EnORoaneXknjd_7_fY8cdGBt6fAcy_dPQYdbIeR4vOR7SzdsH_J_43-06f_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090331737</pqid></control><display><type>article</type><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</creator><creatorcontrib>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</creatorcontrib><description>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.07.027</identifier><identifier>PMID: 30122291</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Systems Biophysics</subject><ispartof>Biophysical journal, 2018-09, Vol.115 (5), p.911-923</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</citedby><cites>FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127462/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349518309135$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30122291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlüßler, Raimund</creatorcontrib><creatorcontrib>Möllmert, Stephanie</creatorcontrib><creatorcontrib>Abuhattum, Shada</creatorcontrib><creatorcontrib>Cojoc, Gheorghe</creatorcontrib><creatorcontrib>Müller, Paul</creatorcontrib><creatorcontrib>Kim, Kyoohyun</creatorcontrib><creatorcontrib>Möckel, Conrad</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Czarske, Jürgen</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</description><subject>Systems Biophysics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi0EYsvCD-CCfOSSMHZixxES0m4FZaWukPi4cLEce9K6SuOsnRbtv8dVlxVcOHlkP_POyA8hrxmUDJh8tyu7aVdyYKqEpgTePCELJmpeACj5lCwAQBZV3YoL8iKlHQDjAthzclHlivOWLYi9Rbs1o7dmoLdmmvy4oaGn33KRb5YhOrqK4de8pWZ09CtOxkfqR7r2xxP6E7toep-2dG3i0SDt7ul19MMQDhm62ZtNpl6SZ70ZEr56OC_Jj08fvy8_F-svq5vl1bqwtWBzoVrZCdsqUXHTViCFbEWPTsmmdnnhzvJaoGqVEoDgmO0RlcMGQMjMCVNdkg_n3OnQ7dFZHOdoBj1FvzfxXgfj9b8vo9_qTThqyXhTS54D3j4ExHB3wDTrvU8Wh8GMGA5Jc2ihqlhTNRllZ9TGkFLE_nEMA32So3c6y9EnORoaneXknjd_7_fY8cdGBt6fAcy_dPQYdbIeR4vOR7SzdsH_J_43-06f_g</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Schlüßler, Raimund</creator><creator>Möllmert, Stephanie</creator><creator>Abuhattum, Shada</creator><creator>Cojoc, Gheorghe</creator><creator>Müller, Paul</creator><creator>Kim, Kyoohyun</creator><creator>Möckel, Conrad</creator><creator>Zimmermann, Conrad</creator><creator>Czarske, Jürgen</creator><creator>Guck, Jochen</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180904</creationdate><title>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</title><author>Schlüßler, Raimund ; Möllmert, Stephanie ; Abuhattum, Shada ; Cojoc, Gheorghe ; Müller, Paul ; Kim, Kyoohyun ; Möckel, Conrad ; Zimmermann, Conrad ; Czarske, Jürgen ; Guck, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-896b5c98532a93065695fed8674d301bc245e898850e0d1cfee8de700565fe5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Systems Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlüßler, Raimund</creatorcontrib><creatorcontrib>Möllmert, Stephanie</creatorcontrib><creatorcontrib>Abuhattum, Shada</creatorcontrib><creatorcontrib>Cojoc, Gheorghe</creatorcontrib><creatorcontrib>Müller, Paul</creatorcontrib><creatorcontrib>Kim, Kyoohyun</creatorcontrib><creatorcontrib>Möckel, Conrad</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Czarske, Jürgen</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlüßler, Raimund</au><au>Möllmert, Stephanie</au><au>Abuhattum, Shada</au><au>Cojoc, Gheorghe</au><au>Müller, Paul</au><au>Kim, Kyoohyun</au><au>Möckel, Conrad</au><au>Zimmermann, Conrad</au><au>Czarske, Jürgen</au><au>Guck, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>115</volume><issue>5</issue><spage>911</spage><epage>923</epage><pages>911-923</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30122291</pmid><doi>10.1016/j.bpj.2018.07.027</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-09, Vol.115 (5), p.911-923
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6127462
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Systems Biophysics
title Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Mapping%20of%20Spinal%20Cord%20Growth%20and%20Repair%20in%20Living%20Zebrafish%20Larvae%20by%20Brillouin%20Imaging&rft.jtitle=Biophysical%20journal&rft.au=Schl%C3%BC%C3%9Fler,%20Raimund&rft.date=2018-09-04&rft.volume=115&rft.issue=5&rft.spage=911&rft.epage=923&rft.pages=911-923&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.07.027&rft_dat=%3Cproquest_pubme%3E2090331737%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090331737&rft_id=info:pmid/30122291&rft_els_id=S0006349518309135&rfr_iscdi=true