Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo

Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2018-10, Vol.36 (9), p.847-856
Hauptverfasser: Rafiq, Sarwish, Yeku, Oladapo O, Jackson, Hollie J, Purdon, Terence J, van Leeuwen, Dayenne G, Drakes, Dylan J, Song, Mei, Miele, Matthew M, Li, Zhuoning, Wang, Pei, Yan, Su, Xiang, Jingyi, Ma, Xiaojing, Seshan, Venkatraman E, Hendrickson, Ronald C, Liu, Cheng, Brentjens, Renier J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 9
container_start_page 847
container_title Nature biotechnology
container_volume 36
creator Rafiq, Sarwish
Yeku, Oladapo O
Jackson, Hollie J
Purdon, Terence J
van Leeuwen, Dayenne G
Drakes, Dylan J
Song, Mei
Miele, Matthew M
Li, Zhuoning
Wang, Pei
Yan, Su
Xiang, Jingyi
Ma, Xiaojing
Seshan, Venkatraman E
Hendrickson, Ronald C
Liu, Cheng
Brentjens, Renier J
description Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1 + hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.
doi_str_mv 10.1038/nbt.4195
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572644884</galeid><sourcerecordid>A572644884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</originalsourceid><addsrcrecordid>eNqNku9rEzEYxw9R3KyCf4EEfKPg1eSSS5M3QqlOB4PJrL6TkMs9uWVek5ncFfvfm7K6tSoigSTk-TzfPL-K4inBU4KpeO2bYcqIrO8Vx6RmvCRc8vv5jsWsxKTmR8WjlK4wxpxx_rA4opjgqpL1cfF1qWMHA7Sohd6tIW5QsEijj29LUjZ9MN-c71AyJ2vUbNBiflEukYG-Twj8pfYGEtJ-cOUwrkJEYK0z2myQ82jt1uFx8cDqPsGT3TkpPp-8Wy4-lGfn708X87PScMqGstJaS2OIYURLYnBFGba1qGcYtxYL2wqqbdNKjAmhpibQMDKrpRAaKsFJTSfFmxvd67FZQWvAD1H36jq6lY4bFbRThxbvLlUX1oqTiksqs8CLnUAM30dIg1q5tM1TewhjUlWupJSM4i36_Df0KozR5_RURYkkQgqG_0mRKvdKMLqn1ekelPM25OjM9ms1r2cVZ0xkblJM_0Ll1cLKmeDBuvx-4PDywCEzA_wYOj2mpE4_Xfw_e_7lkH21xzZjch5S3pLrLod043KA74pqYkgpgr1tCMFqO7cqz63azm1Gn-038Bb8Nah3YaZs8h3Eu3r-IfYTjczwdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124198439</pqid></control><display><type>article</type><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</creator><creatorcontrib>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</creatorcontrib><description>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1 + hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.4195</identifier><identifier>PMID: 30102295</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/21 ; 13/31 ; 631/67/1059/153 ; 631/67/1059/2325 ; 82/58 ; Agriculture ; Animal models ; Animals ; Anticancer properties ; Antigens ; Antitumor agents ; Autocrine signalling ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Care and treatment ; Cell therapy ; Cellular therapy ; Chimeric antigen receptors ; Effectiveness ; Health aspects ; Humans ; Immune checkpoint ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Methods ; Mice ; Paracrine signalling ; PD-1 protein ; PD-L1 protein ; Programmed Cell Death 1 Receptor - immunology ; Receptors, Chimeric Antigen - immunology ; Single-Chain Antibodies - immunology ; Solid tumors ; T cells ; T-Lymphocytes - immunology ; Therapy ; Toxicity ; Tumor Microenvironment ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Nature biotechnology, 2018-10, Vol.36 (9), p.847-856</ispartof><rights>Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</citedby><cites>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</cites><orcidid>0000-0002-4605-5416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.4195$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.4195$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30102295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rafiq, Sarwish</creatorcontrib><creatorcontrib>Yeku, Oladapo O</creatorcontrib><creatorcontrib>Jackson, Hollie J</creatorcontrib><creatorcontrib>Purdon, Terence J</creatorcontrib><creatorcontrib>van Leeuwen, Dayenne G</creatorcontrib><creatorcontrib>Drakes, Dylan J</creatorcontrib><creatorcontrib>Song, Mei</creatorcontrib><creatorcontrib>Miele, Matthew M</creatorcontrib><creatorcontrib>Li, Zhuoning</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ma, Xiaojing</creatorcontrib><creatorcontrib>Seshan, Venkatraman E</creatorcontrib><creatorcontrib>Hendrickson, Ronald C</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Brentjens, Renier J</creatorcontrib><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1 + hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>631/67/1059/153</subject><subject>631/67/1059/2325</subject><subject>82/58</subject><subject>Agriculture</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antigens</subject><subject>Antitumor agents</subject><subject>Autocrine signalling</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Care and treatment</subject><subject>Cell therapy</subject><subject>Cellular therapy</subject><subject>Chimeric antigen receptors</subject><subject>Effectiveness</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Methods</subject><subject>Mice</subject><subject>Paracrine signalling</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Receptors, Chimeric Antigen - immunology</subject><subject>Single-Chain Antibodies - immunology</subject><subject>Solid tumors</subject><subject>T cells</subject><subject>T-Lymphocytes - immunology</subject><subject>Therapy</subject><subject>Toxicity</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNku9rEzEYxw9R3KyCf4EEfKPg1eSSS5M3QqlOB4PJrL6TkMs9uWVek5ncFfvfm7K6tSoigSTk-TzfPL-K4inBU4KpeO2bYcqIrO8Vx6RmvCRc8vv5jsWsxKTmR8WjlK4wxpxx_rA4opjgqpL1cfF1qWMHA7Sohd6tIW5QsEijj29LUjZ9MN-c71AyJ2vUbNBiflEukYG-Twj8pfYGEtJ-cOUwrkJEYK0z2myQ82jt1uFx8cDqPsGT3TkpPp-8Wy4-lGfn708X87PScMqGstJaS2OIYURLYnBFGba1qGcYtxYL2wqqbdNKjAmhpibQMDKrpRAaKsFJTSfFmxvd67FZQWvAD1H36jq6lY4bFbRThxbvLlUX1oqTiksqs8CLnUAM30dIg1q5tM1TewhjUlWupJSM4i36_Df0KozR5_RURYkkQgqG_0mRKvdKMLqn1ekelPM25OjM9ms1r2cVZ0xkblJM_0Ll1cLKmeDBuvx-4PDywCEzA_wYOj2mpE4_Xfw_e_7lkH21xzZjch5S3pLrLod043KA74pqYkgpgr1tCMFqO7cqz63azm1Gn-038Bb8Nah3YaZs8h3Eu3r-IfYTjczwdg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Rafiq, Sarwish</creator><creator>Yeku, Oladapo O</creator><creator>Jackson, Hollie J</creator><creator>Purdon, Terence J</creator><creator>van Leeuwen, Dayenne G</creator><creator>Drakes, Dylan J</creator><creator>Song, Mei</creator><creator>Miele, Matthew M</creator><creator>Li, Zhuoning</creator><creator>Wang, Pei</creator><creator>Yan, Su</creator><creator>Xiang, Jingyi</creator><creator>Ma, Xiaojing</creator><creator>Seshan, Venkatraman E</creator><creator>Hendrickson, Ronald C</creator><creator>Liu, Cheng</creator><creator>Brentjens, Renier J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4605-5416</orcidid></search><sort><creationdate>20181001</creationdate><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><author>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>631/67/1059/153</topic><topic>631/67/1059/2325</topic><topic>82/58</topic><topic>Agriculture</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antigens</topic><topic>Antitumor agents</topic><topic>Autocrine signalling</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Care and treatment</topic><topic>Cell therapy</topic><topic>Cellular therapy</topic><topic>Chimeric antigen receptors</topic><topic>Effectiveness</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Methods</topic><topic>Mice</topic><topic>Paracrine signalling</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Receptors, Chimeric Antigen - immunology</topic><topic>Single-Chain Antibodies - immunology</topic><topic>Solid tumors</topic><topic>T cells</topic><topic>T-Lymphocytes - immunology</topic><topic>Therapy</topic><topic>Toxicity</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafiq, Sarwish</creatorcontrib><creatorcontrib>Yeku, Oladapo O</creatorcontrib><creatorcontrib>Jackson, Hollie J</creatorcontrib><creatorcontrib>Purdon, Terence J</creatorcontrib><creatorcontrib>van Leeuwen, Dayenne G</creatorcontrib><creatorcontrib>Drakes, Dylan J</creatorcontrib><creatorcontrib>Song, Mei</creatorcontrib><creatorcontrib>Miele, Matthew M</creatorcontrib><creatorcontrib>Li, Zhuoning</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ma, Xiaojing</creatorcontrib><creatorcontrib>Seshan, Venkatraman E</creatorcontrib><creatorcontrib>Hendrickson, Ronald C</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Brentjens, Renier J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiq, Sarwish</au><au>Yeku, Oladapo O</au><au>Jackson, Hollie J</au><au>Purdon, Terence J</au><au>van Leeuwen, Dayenne G</au><au>Drakes, Dylan J</au><au>Song, Mei</au><au>Miele, Matthew M</au><au>Li, Zhuoning</au><au>Wang, Pei</au><au>Yan, Su</au><au>Xiang, Jingyi</au><au>Ma, Xiaojing</au><au>Seshan, Venkatraman E</au><au>Hendrickson, Ronald C</au><au>Liu, Cheng</au><au>Brentjens, Renier J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>36</volume><issue>9</issue><spage>847</spage><epage>856</epage><pages>847-856</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1 + hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30102295</pmid><doi>10.1038/nbt.4195</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4605-5416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2018-10, Vol.36 (9), p.847-856
issn 1087-0156
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126939
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 13/1
13/21
13/31
631/67/1059/153
631/67/1059/2325
82/58
Agriculture
Animal models
Animals
Anticancer properties
Antigens
Antitumor agents
Autocrine signalling
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Care and treatment
Cell therapy
Cellular therapy
Chimeric antigen receptors
Effectiveness
Health aspects
Humans
Immune checkpoint
Life Sciences
Lymphocytes
Lymphocytes T
Methods
Mice
Paracrine signalling
PD-1 protein
PD-L1 protein
Programmed Cell Death 1 Receptor - immunology
Receptors, Chimeric Antigen - immunology
Single-Chain Antibodies - immunology
Solid tumors
T cells
T-Lymphocytes - immunology
Therapy
Toxicity
Tumor Microenvironment
Tumors
Xenograft Model Antitumor Assays
title Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20delivery%20of%20a%20PD-1-blocking%20scFv%20by%20CAR-T%20cells%20enhances%20anti-tumor%20efficacy%20in%20vivo&rft.jtitle=Nature%20biotechnology&rft.au=Rafiq,%20Sarwish&rft.date=2018-10-01&rft.volume=36&rft.issue=9&rft.spage=847&rft.epage=856&rft.pages=847-856&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.4195&rft_dat=%3Cgale_pubme%3EA572644884%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124198439&rft_id=info:pmid/30102295&rft_galeid=A572644884&rfr_iscdi=true