Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo
Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice. The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibit...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2018-10, Vol.36 (9), p.847-856 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 9 |
container_start_page | 847 |
container_title | Nature biotechnology |
container_volume | 36 |
creator | Rafiq, Sarwish Yeku, Oladapo O Jackson, Hollie J Purdon, Terence J van Leeuwen, Dayenne G Drakes, Dylan J Song, Mei Miele, Matthew M Li, Zhuoning Wang, Pei Yan, Su Xiang, Jingyi Ma, Xiaojing Seshan, Venkatraman E Hendrickson, Ronald C Liu, Cheng Brentjens, Renier J |
description | Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice.
The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1
+
hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition. |
doi_str_mv | 10.1038/nbt.4195 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572644884</galeid><sourcerecordid>A572644884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</originalsourceid><addsrcrecordid>eNqNku9rEzEYxw9R3KyCf4EEfKPg1eSSS5M3QqlOB4PJrL6TkMs9uWVek5ncFfvfm7K6tSoigSTk-TzfPL-K4inBU4KpeO2bYcqIrO8Vx6RmvCRc8vv5jsWsxKTmR8WjlK4wxpxx_rA4opjgqpL1cfF1qWMHA7Sohd6tIW5QsEijj29LUjZ9MN-c71AyJ2vUbNBiflEukYG-Twj8pfYGEtJ-cOUwrkJEYK0z2myQ82jt1uFx8cDqPsGT3TkpPp-8Wy4-lGfn708X87PScMqGstJaS2OIYURLYnBFGba1qGcYtxYL2wqqbdNKjAmhpibQMDKrpRAaKsFJTSfFmxvd67FZQWvAD1H36jq6lY4bFbRThxbvLlUX1oqTiksqs8CLnUAM30dIg1q5tM1TewhjUlWupJSM4i36_Df0KozR5_RURYkkQgqG_0mRKvdKMLqn1ekelPM25OjM9ms1r2cVZ0xkblJM_0Ll1cLKmeDBuvx-4PDywCEzA_wYOj2mpE4_Xfw_e_7lkH21xzZjch5S3pLrLod043KA74pqYkgpgr1tCMFqO7cqz63azm1Gn-038Bb8Nah3YaZs8h3Eu3r-IfYTjczwdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124198439</pqid></control><display><type>article</type><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</creator><creatorcontrib>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</creatorcontrib><description>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice.
The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1
+
hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.4195</identifier><identifier>PMID: 30102295</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/21 ; 13/31 ; 631/67/1059/153 ; 631/67/1059/2325 ; 82/58 ; Agriculture ; Animal models ; Animals ; Anticancer properties ; Antigens ; Antitumor agents ; Autocrine signalling ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Care and treatment ; Cell therapy ; Cellular therapy ; Chimeric antigen receptors ; Effectiveness ; Health aspects ; Humans ; Immune checkpoint ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Methods ; Mice ; Paracrine signalling ; PD-1 protein ; PD-L1 protein ; Programmed Cell Death 1 Receptor - immunology ; Receptors, Chimeric Antigen - immunology ; Single-Chain Antibodies - immunology ; Solid tumors ; T cells ; T-Lymphocytes - immunology ; Therapy ; Toxicity ; Tumor Microenvironment ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Nature biotechnology, 2018-10, Vol.36 (9), p.847-856</ispartof><rights>Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</citedby><cites>FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</cites><orcidid>0000-0002-4605-5416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.4195$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.4195$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30102295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rafiq, Sarwish</creatorcontrib><creatorcontrib>Yeku, Oladapo O</creatorcontrib><creatorcontrib>Jackson, Hollie J</creatorcontrib><creatorcontrib>Purdon, Terence J</creatorcontrib><creatorcontrib>van Leeuwen, Dayenne G</creatorcontrib><creatorcontrib>Drakes, Dylan J</creatorcontrib><creatorcontrib>Song, Mei</creatorcontrib><creatorcontrib>Miele, Matthew M</creatorcontrib><creatorcontrib>Li, Zhuoning</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ma, Xiaojing</creatorcontrib><creatorcontrib>Seshan, Venkatraman E</creatorcontrib><creatorcontrib>Hendrickson, Ronald C</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Brentjens, Renier J</creatorcontrib><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice.
The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1
+
hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>631/67/1059/153</subject><subject>631/67/1059/2325</subject><subject>82/58</subject><subject>Agriculture</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antigens</subject><subject>Antitumor agents</subject><subject>Autocrine signalling</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Care and treatment</subject><subject>Cell therapy</subject><subject>Cellular therapy</subject><subject>Chimeric antigen receptors</subject><subject>Effectiveness</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Methods</subject><subject>Mice</subject><subject>Paracrine signalling</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Receptors, Chimeric Antigen - immunology</subject><subject>Single-Chain Antibodies - immunology</subject><subject>Solid tumors</subject><subject>T cells</subject><subject>T-Lymphocytes - immunology</subject><subject>Therapy</subject><subject>Toxicity</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNku9rEzEYxw9R3KyCf4EEfKPg1eSSS5M3QqlOB4PJrL6TkMs9uWVek5ncFfvfm7K6tSoigSTk-TzfPL-K4inBU4KpeO2bYcqIrO8Vx6RmvCRc8vv5jsWsxKTmR8WjlK4wxpxx_rA4opjgqpL1cfF1qWMHA7Sohd6tIW5QsEijj29LUjZ9MN-c71AyJ2vUbNBiflEukYG-Twj8pfYGEtJ-cOUwrkJEYK0z2myQ82jt1uFx8cDqPsGT3TkpPp-8Wy4-lGfn708X87PScMqGstJaS2OIYURLYnBFGba1qGcYtxYL2wqqbdNKjAmhpibQMDKrpRAaKsFJTSfFmxvd67FZQWvAD1H36jq6lY4bFbRThxbvLlUX1oqTiksqs8CLnUAM30dIg1q5tM1TewhjUlWupJSM4i36_Df0KozR5_RURYkkQgqG_0mRKvdKMLqn1ekelPM25OjM9ms1r2cVZ0xkblJM_0Ll1cLKmeDBuvx-4PDywCEzA_wYOj2mpE4_Xfw_e_7lkH21xzZjch5S3pLrLod043KA74pqYkgpgr1tCMFqO7cqz63azm1Gn-038Bb8Nah3YaZs8h3Eu3r-IfYTjczwdg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Rafiq, Sarwish</creator><creator>Yeku, Oladapo O</creator><creator>Jackson, Hollie J</creator><creator>Purdon, Terence J</creator><creator>van Leeuwen, Dayenne G</creator><creator>Drakes, Dylan J</creator><creator>Song, Mei</creator><creator>Miele, Matthew M</creator><creator>Li, Zhuoning</creator><creator>Wang, Pei</creator><creator>Yan, Su</creator><creator>Xiang, Jingyi</creator><creator>Ma, Xiaojing</creator><creator>Seshan, Venkatraman E</creator><creator>Hendrickson, Ronald C</creator><creator>Liu, Cheng</creator><creator>Brentjens, Renier J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4605-5416</orcidid></search><sort><creationdate>20181001</creationdate><title>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</title><author>Rafiq, Sarwish ; Yeku, Oladapo O ; Jackson, Hollie J ; Purdon, Terence J ; van Leeuwen, Dayenne G ; Drakes, Dylan J ; Song, Mei ; Miele, Matthew M ; Li, Zhuoning ; Wang, Pei ; Yan, Su ; Xiang, Jingyi ; Ma, Xiaojing ; Seshan, Venkatraman E ; Hendrickson, Ronald C ; Liu, Cheng ; Brentjens, Renier J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-2aaa9cc1c41a91c02340f585700df08fd83afbd900113c51eb4175988ae286153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>631/67/1059/153</topic><topic>631/67/1059/2325</topic><topic>82/58</topic><topic>Agriculture</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antigens</topic><topic>Antitumor agents</topic><topic>Autocrine signalling</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Care and treatment</topic><topic>Cell therapy</topic><topic>Cellular therapy</topic><topic>Chimeric antigen receptors</topic><topic>Effectiveness</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Methods</topic><topic>Mice</topic><topic>Paracrine signalling</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Receptors, Chimeric Antigen - immunology</topic><topic>Single-Chain Antibodies - immunology</topic><topic>Solid tumors</topic><topic>T cells</topic><topic>T-Lymphocytes - immunology</topic><topic>Therapy</topic><topic>Toxicity</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafiq, Sarwish</creatorcontrib><creatorcontrib>Yeku, Oladapo O</creatorcontrib><creatorcontrib>Jackson, Hollie J</creatorcontrib><creatorcontrib>Purdon, Terence J</creatorcontrib><creatorcontrib>van Leeuwen, Dayenne G</creatorcontrib><creatorcontrib>Drakes, Dylan J</creatorcontrib><creatorcontrib>Song, Mei</creatorcontrib><creatorcontrib>Miele, Matthew M</creatorcontrib><creatorcontrib>Li, Zhuoning</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ma, Xiaojing</creatorcontrib><creatorcontrib>Seshan, Venkatraman E</creatorcontrib><creatorcontrib>Hendrickson, Ronald C</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Brentjens, Renier J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiq, Sarwish</au><au>Yeku, Oladapo O</au><au>Jackson, Hollie J</au><au>Purdon, Terence J</au><au>van Leeuwen, Dayenne G</au><au>Drakes, Dylan J</au><au>Song, Mei</au><au>Miele, Matthew M</au><au>Li, Zhuoning</au><au>Wang, Pei</au><au>Yan, Su</au><au>Xiang, Jingyi</au><au>Ma, Xiaojing</au><au>Seshan, Venkatraman E</au><au>Hendrickson, Ronald C</au><au>Liu, Cheng</au><au>Brentjens, Renier J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>36</volume><issue>9</issue><spage>847</spage><epage>856</epage><pages>847-856</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Anti-PD-1 secreted by CAR-T cells remains localized to the tumor and improves therapeutic outcome in mice.
The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1
+
hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30102295</pmid><doi>10.1038/nbt.4195</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4605-5416</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2018-10, Vol.36 (9), p.847-856 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126939 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/1 13/21 13/31 631/67/1059/153 631/67/1059/2325 82/58 Agriculture Animal models Animals Anticancer properties Antigens Antitumor agents Autocrine signalling Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Care and treatment Cell therapy Cellular therapy Chimeric antigen receptors Effectiveness Health aspects Humans Immune checkpoint Life Sciences Lymphocytes Lymphocytes T Methods Mice Paracrine signalling PD-1 protein PD-L1 protein Programmed Cell Death 1 Receptor - immunology Receptors, Chimeric Antigen - immunology Single-Chain Antibodies - immunology Solid tumors T cells T-Lymphocytes - immunology Therapy Toxicity Tumor Microenvironment Tumors Xenograft Model Antitumor Assays |
title | Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20delivery%20of%20a%20PD-1-blocking%20scFv%20by%20CAR-T%20cells%20enhances%20anti-tumor%20efficacy%20in%20vivo&rft.jtitle=Nature%20biotechnology&rft.au=Rafiq,%20Sarwish&rft.date=2018-10-01&rft.volume=36&rft.issue=9&rft.spage=847&rft.epage=856&rft.pages=847-856&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.4195&rft_dat=%3Cgale_pubme%3EA572644884%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124198439&rft_id=info:pmid/30102295&rft_galeid=A572644884&rfr_iscdi=true |