Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia

New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (35), p.E8228-E8235
Hauptverfasser: Kanaji, Taisuke, Vo, My-Nuong, Kanaji, Sachiko, Zarpellon, Alessandro, Shapiro, Ryan, Morodomi, Yosuke, Yuzuriha, Akinori, Eto, Koji, Belani, Rajesh, Do, Minh-Ha, Yang, Xiang-Lei, Ruggeri, Zaverio M., Schimmel, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E8235
container_issue 35
container_start_page E8228
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Kanaji, Taisuke
Vo, My-Nuong
Kanaji, Sachiko
Zarpellon, Alessandro
Shapiro, Ryan
Morodomi, Yosuke
Yuzuriha, Akinori
Eto, Koji
Belani, Rajesh
Do, Minh-Ha
Yang, Xiang-Lei
Ruggeri, Zaverio M.
Schimmel, Paul
description New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1⁺ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.
doi_str_mv 10.1073/pnas.1807000115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26530346</jstor_id><sourcerecordid>26530346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-8cc6876c88b5a3f2c21814f04b1e68c59fe105ceac0b3c22ce355799354bc0ef3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiUsvacd27DgXpKqigFSBhMrZctxJ16vEDrZTlP8el22Xj4vnML95fjOPkNcUTim0_Gz2Jp1SBS0AUCqekA2Fjtay6eAp2QCwtlYNa47Ii5R2hemEgufkiAOFhstmQ35erzGkdazzty_nVVp93mI2CauU3bSMJmOq8jaGqQ9zcJidr52_wRnL43O1xcnk353kUmWsxRGjKdRtFdGGO4xrNZTpRw27Fhq9My_Js8GMCV891GPy_fLD9cWn-urrx88X51e1FdDlWlkrVSutUr0wfGCWUUWbAZqeolRWdANSEBaNhZ5bxixyIdqu46LpLeDAj8n7ve689BPe2GI6mlHP0U0mrjoYp__teLfVt-FOS8pky6AInDwIxPBjwZT15FJZczQew5I0A6VYx4qrgr77D92FJfqynmbl3p0QVIpCne0pWw6fIg4HMxT0faj6PlT9J9Qy8fbvHQ78Y4oFeLMHdimHeOiz8hvwRvJfGvmsHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104955165</pqid></control><display><type>article</type><title>Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanaji, Taisuke ; Vo, My-Nuong ; Kanaji, Sachiko ; Zarpellon, Alessandro ; Shapiro, Ryan ; Morodomi, Yosuke ; Yuzuriha, Akinori ; Eto, Koji ; Belani, Rajesh ; Do, Minh-Ha ; Yang, Xiang-Lei ; Ruggeri, Zaverio M. ; Schimmel, Paul</creator><creatorcontrib>Kanaji, Taisuke ; Vo, My-Nuong ; Kanaji, Sachiko ; Zarpellon, Alessandro ; Shapiro, Ryan ; Morodomi, Yosuke ; Yuzuriha, Akinori ; Eto, Koji ; Belani, Rajesh ; Do, Minh-Ha ; Yang, Xiang-Lei ; Ruggeri, Zaverio M. ; Schimmel, Paul</creatorcontrib><description>New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1⁺ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1807000115</identifier><identifier>PMID: 30104364</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alternative splicing ; Biological Sciences ; Blood cells ; Blood Platelets - metabolism ; Blood Platelets - pathology ; Cell culture ; Cell Culture Techniques ; Cells ; Cells, Cultured ; Cytokines ; Enzymes ; Expansion ; Female ; Hematological diseases ; Hematology ; Hematopoiesis ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Hematopoietic Stem Cells - pathology ; Humans ; Immune system ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; Male ; Megakaryocytes ; Megakaryocytes - metabolism ; Megakaryocytes - pathology ; Monocytes ; Mutagenesis ; MyD88 protein ; Platelets ; Ploidy ; Pluripotency ; PNAS Plus ; Polyploidy ; Protein biosynthesis ; Protein synthesis ; Proteins ; Replenishment ; Signal Transduction ; Splicing ; Stem cell transplantation ; Stem cells ; Thrombocytopenia ; Thrombocytopenia - metabolism ; Thrombocytopenia - pathology ; Thrombopoietin ; Thrombopoietin - metabolism ; Toll-like receptors ; Transfusion ; Transplantation ; tRNA ; Tyrosine-tRNA ligase ; Tyrosine-tRNA Ligase - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (35), p.E8228-E8235</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Aug 28, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-8cc6876c88b5a3f2c21814f04b1e68c59fe105ceac0b3c22ce355799354bc0ef3</citedby><cites>FETCH-LOGICAL-c509t-8cc6876c88b5a3f2c21814f04b1e68c59fe105ceac0b3c22ce355799354bc0ef3</cites><orcidid>0000-0003-0807-1295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26530346$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26530346$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanaji, Taisuke</creatorcontrib><creatorcontrib>Vo, My-Nuong</creatorcontrib><creatorcontrib>Kanaji, Sachiko</creatorcontrib><creatorcontrib>Zarpellon, Alessandro</creatorcontrib><creatorcontrib>Shapiro, Ryan</creatorcontrib><creatorcontrib>Morodomi, Yosuke</creatorcontrib><creatorcontrib>Yuzuriha, Akinori</creatorcontrib><creatorcontrib>Eto, Koji</creatorcontrib><creatorcontrib>Belani, Rajesh</creatorcontrib><creatorcontrib>Do, Minh-Ha</creatorcontrib><creatorcontrib>Yang, Xiang-Lei</creatorcontrib><creatorcontrib>Ruggeri, Zaverio M.</creatorcontrib><creatorcontrib>Schimmel, Paul</creatorcontrib><title>Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1⁺ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.</description><subject>Alternative splicing</subject><subject>Biological Sciences</subject><subject>Blood cells</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - pathology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cytokines</subject><subject>Enzymes</subject><subject>Expansion</subject><subject>Female</subject><subject>Hematological diseases</subject><subject>Hematology</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Humans</subject><subject>Immune system</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>Male</subject><subject>Megakaryocytes</subject><subject>Megakaryocytes - metabolism</subject><subject>Megakaryocytes - pathology</subject><subject>Monocytes</subject><subject>Mutagenesis</subject><subject>MyD88 protein</subject><subject>Platelets</subject><subject>Ploidy</subject><subject>Pluripotency</subject><subject>PNAS Plus</subject><subject>Polyploidy</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Replenishment</subject><subject>Signal Transduction</subject><subject>Splicing</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Thrombocytopenia</subject><subject>Thrombocytopenia - metabolism</subject><subject>Thrombocytopenia - pathology</subject><subject>Thrombopoietin</subject><subject>Thrombopoietin - metabolism</subject><subject>Toll-like receptors</subject><subject>Transfusion</subject><subject>Transplantation</subject><subject>tRNA</subject><subject>Tyrosine-tRNA ligase</subject><subject>Tyrosine-tRNA Ligase - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAkUiUsvacd27DgXpKqigFSBhMrZctxJ16vEDrZTlP8el22Xj4vnML95fjOPkNcUTim0_Gz2Jp1SBS0AUCqekA2Fjtay6eAp2QCwtlYNa47Ii5R2hemEgufkiAOFhstmQ35erzGkdazzty_nVVp93mI2CauU3bSMJmOq8jaGqQ9zcJidr52_wRnL43O1xcnk353kUmWsxRGjKdRtFdGGO4xrNZTpRw27Fhq9My_Js8GMCV891GPy_fLD9cWn-urrx88X51e1FdDlWlkrVSutUr0wfGCWUUWbAZqeolRWdANSEBaNhZ5bxixyIdqu46LpLeDAj8n7ve689BPe2GI6mlHP0U0mrjoYp__teLfVt-FOS8pky6AInDwIxPBjwZT15FJZczQew5I0A6VYx4qrgr77D92FJfqynmbl3p0QVIpCne0pWw6fIg4HMxT0faj6PlT9J9Qy8fbvHQ78Y4oFeLMHdimHeOiz8hvwRvJfGvmsHg</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Kanaji, Taisuke</creator><creator>Vo, My-Nuong</creator><creator>Kanaji, Sachiko</creator><creator>Zarpellon, Alessandro</creator><creator>Shapiro, Ryan</creator><creator>Morodomi, Yosuke</creator><creator>Yuzuriha, Akinori</creator><creator>Eto, Koji</creator><creator>Belani, Rajesh</creator><creator>Do, Minh-Ha</creator><creator>Yang, Xiang-Lei</creator><creator>Ruggeri, Zaverio M.</creator><creator>Schimmel, Paul</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0807-1295</orcidid></search><sort><creationdate>20180828</creationdate><title>Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia</title><author>Kanaji, Taisuke ; Vo, My-Nuong ; Kanaji, Sachiko ; Zarpellon, Alessandro ; Shapiro, Ryan ; Morodomi, Yosuke ; Yuzuriha, Akinori ; Eto, Koji ; Belani, Rajesh ; Do, Minh-Ha ; Yang, Xiang-Lei ; Ruggeri, Zaverio M. ; Schimmel, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-8cc6876c88b5a3f2c21814f04b1e68c59fe105ceac0b3c22ce355799354bc0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative splicing</topic><topic>Biological Sciences</topic><topic>Blood cells</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - pathology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cytokines</topic><topic>Enzymes</topic><topic>Expansion</topic><topic>Female</topic><topic>Hematological diseases</topic><topic>Hematology</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Humans</topic><topic>Immune system</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>Male</topic><topic>Megakaryocytes</topic><topic>Megakaryocytes - metabolism</topic><topic>Megakaryocytes - pathology</topic><topic>Monocytes</topic><topic>Mutagenesis</topic><topic>MyD88 protein</topic><topic>Platelets</topic><topic>Ploidy</topic><topic>Pluripotency</topic><topic>PNAS Plus</topic><topic>Polyploidy</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Replenishment</topic><topic>Signal Transduction</topic><topic>Splicing</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Thrombocytopenia</topic><topic>Thrombocytopenia - metabolism</topic><topic>Thrombocytopenia - pathology</topic><topic>Thrombopoietin</topic><topic>Thrombopoietin - metabolism</topic><topic>Toll-like receptors</topic><topic>Transfusion</topic><topic>Transplantation</topic><topic>tRNA</topic><topic>Tyrosine-tRNA ligase</topic><topic>Tyrosine-tRNA Ligase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanaji, Taisuke</creatorcontrib><creatorcontrib>Vo, My-Nuong</creatorcontrib><creatorcontrib>Kanaji, Sachiko</creatorcontrib><creatorcontrib>Zarpellon, Alessandro</creatorcontrib><creatorcontrib>Shapiro, Ryan</creatorcontrib><creatorcontrib>Morodomi, Yosuke</creatorcontrib><creatorcontrib>Yuzuriha, Akinori</creatorcontrib><creatorcontrib>Eto, Koji</creatorcontrib><creatorcontrib>Belani, Rajesh</creatorcontrib><creatorcontrib>Do, Minh-Ha</creatorcontrib><creatorcontrib>Yang, Xiang-Lei</creatorcontrib><creatorcontrib>Ruggeri, Zaverio M.</creatorcontrib><creatorcontrib>Schimmel, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanaji, Taisuke</au><au>Vo, My-Nuong</au><au>Kanaji, Sachiko</au><au>Zarpellon, Alessandro</au><au>Shapiro, Ryan</au><au>Morodomi, Yosuke</au><au>Yuzuriha, Akinori</au><au>Eto, Koji</au><au>Belani, Rajesh</au><au>Do, Minh-Ha</au><au>Yang, Xiang-Lei</au><au>Ruggeri, Zaverio M.</au><au>Schimmel, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>115</volume><issue>35</issue><spage>E8228</spage><epage>E8235</epage><pages>E8228-E8235</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1⁺ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30104364</pmid><doi>10.1073/pnas.1807000115</doi><orcidid>https://orcid.org/0000-0003-0807-1295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (35), p.E8228-E8235
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6126720
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alternative splicing
Biological Sciences
Blood cells
Blood Platelets - metabolism
Blood Platelets - pathology
Cell culture
Cell Culture Techniques
Cells
Cells, Cultured
Cytokines
Enzymes
Expansion
Female
Hematological diseases
Hematology
Hematopoiesis
Hematopoietic stem cells
Hematopoietic Stem Cells - metabolism
Hematopoietic Stem Cells - pathology
Humans
Immune system
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Male
Megakaryocytes
Megakaryocytes - metabolism
Megakaryocytes - pathology
Monocytes
Mutagenesis
MyD88 protein
Platelets
Ploidy
Pluripotency
PNAS Plus
Polyploidy
Protein biosynthesis
Protein synthesis
Proteins
Replenishment
Signal Transduction
Splicing
Stem cell transplantation
Stem cells
Thrombocytopenia
Thrombocytopenia - metabolism
Thrombocytopenia - pathology
Thrombopoietin
Thrombopoietin - metabolism
Toll-like receptors
Transfusion
Transplantation
tRNA
Tyrosine-tRNA ligase
Tyrosine-tRNA Ligase - metabolism
title Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tyrosyl-tRNA%20synthetase%20stimulates%20thrombopoietin-independent%20hematopoiesis%20accelerating%20recovery%20from%20thrombocytopenia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kanaji,%20Taisuke&rft.date=2018-08-28&rft.volume=115&rft.issue=35&rft.spage=E8228&rft.epage=E8235&rft.pages=E8228-E8235&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1807000115&rft_dat=%3Cjstor_pubme%3E26530346%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104955165&rft_id=info:pmid/30104364&rft_jstor_id=26530346&rfr_iscdi=true