Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks

Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with repl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2018-09, Vol.19 (9), p.n/a
Hauptverfasser: Hiraga, Shin‐ichiro, Monerawela, Chandre, Katou, Yuki, Shaw, Sophie, Clark, Kate RM, Shirahige, Katsuhiko, Donaldson, Anne D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title EMBO reports
container_volume 19
creator Hiraga, Shin‐ichiro
Monerawela, Chandre
Katou, Yuki
Shaw, Sophie
Clark, Kate RM
Shirahige, Katsuhiko
Donaldson, Anne D
description Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks. Synopsis This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation. ChIP‐Seq analysis revealed Rap1‐dependent and –independent budding yeast Rif1 chromosomal binding sites. Rif1 binds early and late origins without apparent preference. Rif1 binds stalled replication forks or post‐replicative chromatin under replication stress, and protects nascent DNA from degradation. Rif1 associates with centromeres in S phase. Graphical Abstract This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation.
doi_str_mv 10.15252/embr.201846222
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6123642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088291518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5132-203b394ff101638feeab80c7ffb983e16f7958a6492b4b53102708c5b7f5353</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMo9sOu3UnAjZvX5iaTmcSF0E8tVIXaRTclJJnkmXZe8kxmWt5_36nv-doK4upeuL9zOJeD0Fsgu8App3tuZvIuJSCqmlL6Am1CVcsJg0a8XO2UwuUG2irlmhDCZSNeow1GgFSUsE10dTC0bYhTvHC69Pg8eMAmxLbgPuHs5l2wug8p4pTDNMSCdWzxPKfe2b7go2_7WPfYdMneuPYZ71O-KW_QK6-74nZWcxv9ODm-OPwyOfv--fRw_2xiOTA6GZMYJivvgUDNhHdOG0Fs472RgjmofSO50HUlqakMZ0BoQ4TlpvGccbaNPi1d54OZuda62GfdqXkOM50XKumgnl9i-Kmm6VbVQFld0dHgw8ogp1-DK72ahWJd1-no0lAUJUJQCRzEiL7_C71OQ47jcyMlJeNEyIdEe0vK5lRKdn4dBoj6XZx6KE6tixsV757-sOb_NDUCH5fAXejc4n9-6vjrwflTd7IUl1EXpy4_pv5XoHt9YrUG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099350895</pqid></control><display><type>article</type><title>Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Hiraga, Shin‐ichiro ; Monerawela, Chandre ; Katou, Yuki ; Shaw, Sophie ; Clark, Kate RM ; Shirahige, Katsuhiko ; Donaldson, Anne D</creator><creatorcontrib>Hiraga, Shin‐ichiro ; Monerawela, Chandre ; Katou, Yuki ; Shaw, Sophie ; Clark, Kate RM ; Shirahige, Katsuhiko ; Donaldson, Anne D</creatorcontrib><description>Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks. Synopsis This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation. ChIP‐Seq analysis revealed Rap1‐dependent and –independent budding yeast Rif1 chromosomal binding sites. Rif1 binds early and late origins without apparent preference. Rif1 binds stalled replication forks or post‐replicative chromatin under replication stress, and protects nascent DNA from degradation. Rif1 associates with centromeres in S phase. Graphical Abstract This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201846222</identifier><identifier>PMID: 30104203</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Binding sites ; Binding Sites - physiology ; Biodegradation ; Cell Cycle ; Cell Cycle Proteins - metabolism ; centromere ; Centromere - metabolism ; Centromeres ; ChIP‐Seq ; Chromatin ; Chromosomes, Plant - chemistry ; Degradation ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA Replication - physiology ; DNA replication origin ; DNA Replication Timing - physiology ; EMBO13 ; G1 phase ; Genomes ; Hydroxyurea ; Immunoprecipitation ; Labeling ; Minichromosome Maintenance Proteins - metabolism ; Mutation ; nascent DNA ; Origins ; Protein Phosphatase 1 - metabolism ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Rap1 protein ; Replication ; Replication forks ; Replication initiation ; Replication Origin - physiology ; Replication origins ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rif1 ; S phase ; S Phase - physiology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Shelterin Complex ; Telomere - metabolism ; Telomere-Binding Proteins - chemistry ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>EMBO reports, 2018-09, Vol.19 (9), p.n/a</ispartof><rights>The Author(s) 2018</rights><rights>2018 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2018 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5132-203b394ff101638feeab80c7ffb983e16f7958a6492b4b53102708c5b7f5353</citedby><cites>FETCH-LOGICAL-c5132-203b394ff101638feeab80c7ffb983e16f7958a6492b4b53102708c5b7f5353</cites><orcidid>0000-0002-8722-3869 ; 0000-0001-7842-8136 ; 0000-0003-2367-2670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123642/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123642/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27923,27924,41119,42188,45573,45574,46408,46832,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiraga, Shin‐ichiro</creatorcontrib><creatorcontrib>Monerawela, Chandre</creatorcontrib><creatorcontrib>Katou, Yuki</creatorcontrib><creatorcontrib>Shaw, Sophie</creatorcontrib><creatorcontrib>Clark, Kate RM</creatorcontrib><creatorcontrib>Shirahige, Katsuhiko</creatorcontrib><creatorcontrib>Donaldson, Anne D</creatorcontrib><title>Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks. Synopsis This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation. ChIP‐Seq analysis revealed Rap1‐dependent and –independent budding yeast Rif1 chromosomal binding sites. Rif1 binds early and late origins without apparent preference. Rif1 binds stalled replication forks or post‐replicative chromatin under replication stress, and protects nascent DNA from degradation. Rif1 associates with centromeres in S phase. Graphical Abstract This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation.</description><subject>Binding sites</subject><subject>Binding Sites - physiology</subject><subject>Biodegradation</subject><subject>Cell Cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>centromere</subject><subject>Centromere - metabolism</subject><subject>Centromeres</subject><subject>ChIP‐Seq</subject><subject>Chromatin</subject><subject>Chromosomes, Plant - chemistry</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Replication - physiology</subject><subject>DNA replication origin</subject><subject>DNA Replication Timing - physiology</subject><subject>EMBO13</subject><subject>G1 phase</subject><subject>Genomes</subject><subject>Hydroxyurea</subject><subject>Immunoprecipitation</subject><subject>Labeling</subject><subject>Minichromosome Maintenance Proteins - metabolism</subject><subject>Mutation</subject><subject>nascent DNA</subject><subject>Origins</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Rap1 protein</subject><subject>Replication</subject><subject>Replication forks</subject><subject>Replication initiation</subject><subject>Replication Origin - physiology</subject><subject>Replication origins</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rif1</subject><subject>S phase</subject><subject>S Phase - physiology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Shelterin Complex</subject><subject>Telomere - metabolism</subject><subject>Telomere-Binding Proteins - chemistry</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1rFTEUxYMo9sOu3UnAjZvX5iaTmcSF0E8tVIXaRTclJJnkmXZe8kxmWt5_36nv-doK4upeuL9zOJeD0Fsgu8App3tuZvIuJSCqmlL6Am1CVcsJg0a8XO2UwuUG2irlmhDCZSNeow1GgFSUsE10dTC0bYhTvHC69Pg8eMAmxLbgPuHs5l2wug8p4pTDNMSCdWzxPKfe2b7go2_7WPfYdMneuPYZ71O-KW_QK6-74nZWcxv9ODm-OPwyOfv--fRw_2xiOTA6GZMYJivvgUDNhHdOG0Fs472RgjmofSO50HUlqakMZ0BoQ4TlpvGccbaNPi1d54OZuda62GfdqXkOM50XKumgnl9i-Kmm6VbVQFld0dHgw8ogp1-DK72ahWJd1-no0lAUJUJQCRzEiL7_C71OQ47jcyMlJeNEyIdEe0vK5lRKdn4dBoj6XZx6KE6tixsV757-sOb_NDUCH5fAXejc4n9-6vjrwflTd7IUl1EXpy4_pv5XoHt9YrUG</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Hiraga, Shin‐ichiro</creator><creator>Monerawela, Chandre</creator><creator>Katou, Yuki</creator><creator>Shaw, Sophie</creator><creator>Clark, Kate RM</creator><creator>Shirahige, Katsuhiko</creator><creator>Donaldson, Anne D</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8722-3869</orcidid><orcidid>https://orcid.org/0000-0001-7842-8136</orcidid><orcidid>https://orcid.org/0000-0003-2367-2670</orcidid></search><sort><creationdate>201809</creationdate><title>Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks</title><author>Hiraga, Shin‐ichiro ; Monerawela, Chandre ; Katou, Yuki ; Shaw, Sophie ; Clark, Kate RM ; Shirahige, Katsuhiko ; Donaldson, Anne D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5132-203b394ff101638feeab80c7ffb983e16f7958a6492b4b53102708c5b7f5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding sites</topic><topic>Binding Sites - physiology</topic><topic>Biodegradation</topic><topic>Cell Cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>centromere</topic><topic>Centromere - metabolism</topic><topic>Centromeres</topic><topic>ChIP‐Seq</topic><topic>Chromatin</topic><topic>Chromosomes, Plant - chemistry</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Replication - physiology</topic><topic>DNA replication origin</topic><topic>DNA Replication Timing - physiology</topic><topic>EMBO13</topic><topic>G1 phase</topic><topic>Genomes</topic><topic>Hydroxyurea</topic><topic>Immunoprecipitation</topic><topic>Labeling</topic><topic>Minichromosome Maintenance Proteins - metabolism</topic><topic>Mutation</topic><topic>nascent DNA</topic><topic>Origins</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Rap1 protein</topic><topic>Replication</topic><topic>Replication forks</topic><topic>Replication initiation</topic><topic>Replication Origin - physiology</topic><topic>Replication origins</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rif1</topic><topic>S phase</topic><topic>S Phase - physiology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Shelterin Complex</topic><topic>Telomere - metabolism</topic><topic>Telomere-Binding Proteins - chemistry</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiraga, Shin‐ichiro</creatorcontrib><creatorcontrib>Monerawela, Chandre</creatorcontrib><creatorcontrib>Katou, Yuki</creatorcontrib><creatorcontrib>Shaw, Sophie</creatorcontrib><creatorcontrib>Clark, Kate RM</creatorcontrib><creatorcontrib>Shirahige, Katsuhiko</creatorcontrib><creatorcontrib>Donaldson, Anne D</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiraga, Shin‐ichiro</au><au>Monerawela, Chandre</au><au>Katou, Yuki</au><au>Shaw, Sophie</au><au>Clark, Kate RM</au><au>Shirahige, Katsuhiko</au><au>Donaldson, Anne D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2018-09</date><risdate>2018</risdate><volume>19</volume><issue>9</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks. Synopsis This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation. ChIP‐Seq analysis revealed Rap1‐dependent and –independent budding yeast Rif1 chromosomal binding sites. Rif1 binds early and late origins without apparent preference. Rif1 binds stalled replication forks or post‐replicative chromatin under replication stress, and protects nascent DNA from degradation. Rif1 associates with centromeres in S phase. Graphical Abstract This study identifies genome‐wide Rif1 bindings sites in budding yeast. Rif1 binds both replication origins and stalled replication forks and protects nascent DNA from degradation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30104203</pmid><doi>10.15252/embr.201846222</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8722-3869</orcidid><orcidid>https://orcid.org/0000-0001-7842-8136</orcidid><orcidid>https://orcid.org/0000-0003-2367-2670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2018-09, Vol.19 (9), p.n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6123642
source MEDLINE; Springer Nature OA Free Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Binding sites
Binding Sites - physiology
Biodegradation
Cell Cycle
Cell Cycle Proteins - metabolism
centromere
Centromere - metabolism
Centromeres
ChIP‐Seq
Chromatin
Chromosomes, Plant - chemistry
Degradation
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA biosynthesis
DNA Replication - physiology
DNA replication origin
DNA Replication Timing - physiology
EMBO13
G1 phase
Genomes
Hydroxyurea
Immunoprecipitation
Labeling
Minichromosome Maintenance Proteins - metabolism
Mutation
nascent DNA
Origins
Protein Phosphatase 1 - metabolism
Protein Serine-Threonine Kinases - metabolism
Proteins
Rap1 protein
Replication
Replication forks
Replication initiation
Replication Origin - physiology
Replication origins
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Rif1
S phase
S Phase - physiology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Shelterin Complex
Telomere - metabolism
Telomere-Binding Proteins - chemistry
Telomere-Binding Proteins - genetics
Telomere-Binding Proteins - metabolism
Telomeres
Transcription Factors - metabolism
Yeast
Yeasts
title Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Budding%20yeast%20Rif1%20binds%20to%20replication%20origins%20and%20protects%20DNA%20at%20blocked%20replication%20forks&rft.jtitle=EMBO%20reports&rft.au=Hiraga,%20Shin%E2%80%90ichiro&rft.date=2018-09&rft.volume=19&rft.issue=9&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201846222&rft_dat=%3Cproquest_pubme%3E2088291518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099350895&rft_id=info:pmid/30104203&rfr_iscdi=true