Pathways for mitigating thermal losses in solar photovoltaics

To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-09, Vol.8 (1), p.13163-9, Article 13163
Hauptverfasser: Vaillon, Rodolphe, Dupré, Olivier, Cal, Raúl Bayoán, Calaf, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 13163
container_title Scientific reports
container_volume 8
creator Vaillon, Rodolphe
Dupré, Olivier
Cal, Raúl Bayoán
Calaf, Marc
description To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.
doi_str_mv 10.1038/s41598-018-31257-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099032611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-32835a961984215461b67d6c8efa5d2e9181bebdfbab65714f3b8561d10bedfa3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi1ERau2L8ACRbApi4Cv_7MAqaqgRRoJFrC2HMeZuEriwfYM6tvX05S2dIE3tnyPj6_uh9BrwB8AU_UxMeCNqjGomgLhssYv0BHBjNeEEvLyyfkQnaZ0jcvipGHQvEKHFIOUEvAR-vTD5OGPuUlVH2I1-ezXJvt5XeXBxcmM1RhScqnyc5XCaGK1GUIOuzBm4206QQe9GZM7vd-P0a-vX35eXNWr75ffLs5XteWS5ZoSRblpBDSKEeBMQCtkJ6xyveEdcQ0oaF3b9a1pBZfAetoqLqAD3LquN_QYfV68m207uc66OUcz6k30k4k3Ohiv_63MftDrsNMCCFaCFcHbRRBS9jpZn50dbJhnZ7MGJiRwVaD3CzQ8c1-dr_T-DhPAkgDbQWHP7juK4ffWpawnn6wbRzO7sE2a4KZhlEuFC_ruGXodtnEu87qjMCUC9kKyUDaWiUfXP3QAWO8T10viuiSu7xLXe_Wbp3N5ePI33wLQBUilNK9dfPz7P9pbCUy1Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099032611</pqid></control><display><type>article</type><title>Pathways for mitigating thermal losses in solar photovoltaics</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Vaillon, Rodolphe ; Dupré, Olivier ; Cal, Raúl Bayoán ; Calaf, Marc</creator><creatorcontrib>Vaillon, Rodolphe ; Dupré, Olivier ; Cal, Raúl Bayoán ; Calaf, Marc ; Portland State Univ., Portland, OR (United States)</creatorcontrib><description>To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-31257-0</identifier><identifier>PMID: 30177710</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/4077/909/4101/4096/946 ; Aging ; Electric power ; Engineering Sciences ; Humanities and Social Sciences ; multidisciplinary ; Photovoltaic cells ; Photovoltaics ; Science ; Science (multidisciplinary) ; SOLAR ENERGY</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.13163-9, Article 13163</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-32835a961984215461b67d6c8efa5d2e9181bebdfbab65714f3b8561d10bedfa3</citedby><cites>FETCH-LOGICAL-c574t-32835a961984215461b67d6c8efa5d2e9181bebdfbab65714f3b8561d10bedfa3</cites><orcidid>0000-0002-8559-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120864/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120864/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30177710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02107214$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1467158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaillon, Rodolphe</creatorcontrib><creatorcontrib>Dupré, Olivier</creatorcontrib><creatorcontrib>Cal, Raúl Bayoán</creatorcontrib><creatorcontrib>Calaf, Marc</creatorcontrib><creatorcontrib>Portland State Univ., Portland, OR (United States)</creatorcontrib><title>Pathways for mitigating thermal losses in solar photovoltaics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.</description><subject>639/166/988</subject><subject>639/4077/909/4101/4096/946</subject><subject>Aging</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SOLAR ENERGY</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAURi1ERau2L8ACRbApi4Cv_7MAqaqgRRoJFrC2HMeZuEriwfYM6tvX05S2dIE3tnyPj6_uh9BrwB8AU_UxMeCNqjGomgLhssYv0BHBjNeEEvLyyfkQnaZ0jcvipGHQvEKHFIOUEvAR-vTD5OGPuUlVH2I1-ezXJvt5XeXBxcmM1RhScqnyc5XCaGK1GUIOuzBm4206QQe9GZM7vd-P0a-vX35eXNWr75ffLs5XteWS5ZoSRblpBDSKEeBMQCtkJ6xyveEdcQ0oaF3b9a1pBZfAetoqLqAD3LquN_QYfV68m207uc66OUcz6k30k4k3Ohiv_63MftDrsNMCCFaCFcHbRRBS9jpZn50dbJhnZ7MGJiRwVaD3CzQ8c1-dr_T-DhPAkgDbQWHP7juK4ffWpawnn6wbRzO7sE2a4KZhlEuFC_ruGXodtnEu87qjMCUC9kKyUDaWiUfXP3QAWO8T10viuiSu7xLXe_Wbp3N5ePI33wLQBUilNK9dfPz7P9pbCUy1Jw</recordid><startdate>20180903</startdate><enddate>20180903</enddate><creator>Vaillon, Rodolphe</creator><creator>Dupré, Olivier</creator><creator>Cal, Raúl Bayoán</creator><creator>Calaf, Marc</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8559-3604</orcidid></search><sort><creationdate>20180903</creationdate><title>Pathways for mitigating thermal losses in solar photovoltaics</title><author>Vaillon, Rodolphe ; Dupré, Olivier ; Cal, Raúl Bayoán ; Calaf, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-32835a961984215461b67d6c8efa5d2e9181bebdfbab65714f3b8561d10bedfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/988</topic><topic>639/4077/909/4101/4096/946</topic><topic>Aging</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaillon, Rodolphe</creatorcontrib><creatorcontrib>Dupré, Olivier</creatorcontrib><creatorcontrib>Cal, Raúl Bayoán</creatorcontrib><creatorcontrib>Calaf, Marc</creatorcontrib><creatorcontrib>Portland State Univ., Portland, OR (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaillon, Rodolphe</au><au>Dupré, Olivier</au><au>Cal, Raúl Bayoán</au><au>Calaf, Marc</au><aucorp>Portland State Univ., Portland, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathways for mitigating thermal losses in solar photovoltaics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-03</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>13163</spage><epage>9</epage><pages>13163-9</pages><artnum>13163</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30177710</pmid><doi>10.1038/s41598-018-31257-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8559-3604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-09, Vol.8 (1), p.13163-9, Article 13163
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120864
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/166/988
639/4077/909/4101/4096/946
Aging
Electric power
Engineering Sciences
Humanities and Social Sciences
multidisciplinary
Photovoltaic cells
Photovoltaics
Science
Science (multidisciplinary)
SOLAR ENERGY
title Pathways for mitigating thermal losses in solar photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathways%20for%20mitigating%20thermal%20losses%20in%20solar%20photovoltaics&rft.jtitle=Scientific%20reports&rft.au=Vaillon,%20Rodolphe&rft.aucorp=Portland%20State%20Univ.,%20Portland,%20OR%20(United%20States)&rft.date=2018-09-03&rft.volume=8&rft.issue=1&rft.spage=13163&rft.epage=9&rft.pages=13163-9&rft.artnum=13163&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-31257-0&rft_dat=%3Cproquest_pubme%3E2099032611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099032611&rft_id=info:pmid/30177710&rfr_iscdi=true