Simplification of complex DNA profiles using front end cell separation and probabilistic modeling
•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can in...
Gespeichert in:
Veröffentlicht in: | Forensic science international : genetics 2018-09, Vol.36, p.205-212 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | |
container_start_page | 205 |
container_title | Forensic science international : genetics |
container_volume | 36 |
creator | Stokes, Nancy A. Stanciu, Cristina E. Brocato, Emily R. Ehrhardt, Christopher J. Greenspoon, Susan A. |
description | •A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample.
Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures. |
doi_str_mv | 10.1016/j.fsigen.2018.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1872497318301145</els_id><sourcerecordid>2078584545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXwDRDykUuCHcd_9oJUlRaQqnIAzpZjj5dZJXGwsxV8e7xsKXDpyaPxe288_hHykrOWM67e7NpYcAtz2zFuWqZbxvpH5JQbbRomOvX4d901_UaLE_KslB1jcqO5fEpORC1lL7pT4j7jtIwY0bsV00xTpD7VDvyg727O6ZJTxBEK3RectzTmNK8U5kA9jCMtsLh89Lnaq-LBDThiWdHTKQUYq-k5eRLdWODF3XlGvl5dfrn40Fx_ev_x4vy68b0SaxPZ4KLhkRupQWkOIqqgw8YIPiivot4E4JpraTRjejA86OhEYI4JKXRQ4oy8PeYu-2GC4GFesxvtknFy-adNDu3_NzN-s9t0axXvmDamBry-C8jp-x7Kaicshz3dDGlf7EElTS97WaX9UepzKiVDvB_DmT3QsTt7pGMPdCzTttKptlf_PvHe9AfH3x2gftQtQrbFI8weAmbwqw0JH57wCyDspNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078584545</pqid></control><display><type>article</type><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</creator><creatorcontrib>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</creatorcontrib><description>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample.
Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</description><identifier>ISSN: 1872-4973</identifier><identifier>EISSN: 1878-0326</identifier><identifier>DOI: 10.1016/j.fsigen.2018.07.004</identifier><identifier>PMID: 30055432</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antibodies ; Blood Chemical Analysis ; Cell Separation ; DNA - analysis ; DNA Fingerprinting - methods ; DNA mixtures ; Flow Cytometry ; Fluorescence ; Humans ; Microsatellite Repeats ; Models, Statistical ; Molecular Probes ; Probabilistic modeling ; Real-Time Polymerase Chain Reaction ; TrueAllele</subject><ispartof>Forensic science international : genetics, 2018-09, Vol.36, p.205-212</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</citedby><cites>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fsigen.2018.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30055432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stokes, Nancy A.</creatorcontrib><creatorcontrib>Stanciu, Cristina E.</creatorcontrib><creatorcontrib>Brocato, Emily R.</creatorcontrib><creatorcontrib>Ehrhardt, Christopher J.</creatorcontrib><creatorcontrib>Greenspoon, Susan A.</creatorcontrib><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><title>Forensic science international : genetics</title><addtitle>Forensic Sci Int Genet</addtitle><description>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample.
Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</description><subject>Antibodies</subject><subject>Blood Chemical Analysis</subject><subject>Cell Separation</subject><subject>DNA - analysis</subject><subject>DNA Fingerprinting - methods</subject><subject>DNA mixtures</subject><subject>Flow Cytometry</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Microsatellite Repeats</subject><subject>Models, Statistical</subject><subject>Molecular Probes</subject><subject>Probabilistic modeling</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>TrueAllele</subject><issn>1872-4973</issn><issn>1878-0326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EoqXwDRDykUuCHcd_9oJUlRaQqnIAzpZjj5dZJXGwsxV8e7xsKXDpyaPxe288_hHykrOWM67e7NpYcAtz2zFuWqZbxvpH5JQbbRomOvX4d901_UaLE_KslB1jcqO5fEpORC1lL7pT4j7jtIwY0bsV00xTpD7VDvyg727O6ZJTxBEK3RectzTmNK8U5kA9jCMtsLh89Lnaq-LBDThiWdHTKQUYq-k5eRLdWODF3XlGvl5dfrn40Fx_ev_x4vy68b0SaxPZ4KLhkRupQWkOIqqgw8YIPiivot4E4JpraTRjejA86OhEYI4JKXRQ4oy8PeYu-2GC4GFesxvtknFy-adNDu3_NzN-s9t0axXvmDamBry-C8jp-x7Kaicshz3dDGlf7EElTS97WaX9UepzKiVDvB_DmT3QsTt7pGMPdCzTttKptlf_PvHe9AfH3x2gftQtQrbFI8weAmbwqw0JH57wCyDspNY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Stokes, Nancy A.</creator><creator>Stanciu, Cristina E.</creator><creator>Brocato, Emily R.</creator><creator>Ehrhardt, Christopher J.</creator><creator>Greenspoon, Susan A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><author>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibodies</topic><topic>Blood Chemical Analysis</topic><topic>Cell Separation</topic><topic>DNA - analysis</topic><topic>DNA Fingerprinting - methods</topic><topic>DNA mixtures</topic><topic>Flow Cytometry</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Microsatellite Repeats</topic><topic>Models, Statistical</topic><topic>Molecular Probes</topic><topic>Probabilistic modeling</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>TrueAllele</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stokes, Nancy A.</creatorcontrib><creatorcontrib>Stanciu, Cristina E.</creatorcontrib><creatorcontrib>Brocato, Emily R.</creatorcontrib><creatorcontrib>Ehrhardt, Christopher J.</creatorcontrib><creatorcontrib>Greenspoon, Susan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Forensic science international : genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stokes, Nancy A.</au><au>Stanciu, Cristina E.</au><au>Brocato, Emily R.</au><au>Ehrhardt, Christopher J.</au><au>Greenspoon, Susan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</atitle><jtitle>Forensic science international : genetics</jtitle><addtitle>Forensic Sci Int Genet</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>36</volume><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>1872-4973</issn><eissn>1878-0326</eissn><abstract>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample.
Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30055432</pmid><doi>10.1016/j.fsigen.2018.07.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1872-4973 |
ispartof | Forensic science international : genetics, 2018-09, Vol.36, p.205-212 |
issn | 1872-4973 1878-0326 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120788 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Antibodies Blood Chemical Analysis Cell Separation DNA - analysis DNA Fingerprinting - methods DNA mixtures Flow Cytometry Fluorescence Humans Microsatellite Repeats Models, Statistical Molecular Probes Probabilistic modeling Real-Time Polymerase Chain Reaction TrueAllele |
title | Simplification of complex DNA profiles using front end cell separation and probabilistic modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplification%20of%20complex%20DNA%20profiles%20using%20front%20end%20cell%20separation%20and%20probabilistic%20modeling&rft.jtitle=Forensic%20science%20international%20:%20genetics&rft.au=Stokes,%20Nancy%20A.&rft.date=2018-09-01&rft.volume=36&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=1872-4973&rft.eissn=1878-0326&rft_id=info:doi/10.1016/j.fsigen.2018.07.004&rft_dat=%3Cproquest_pubme%3E2078584545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078584545&rft_id=info:pmid/30055432&rft_els_id=S1872497318301145&rfr_iscdi=true |