Simplification of complex DNA profiles using front end cell separation and probabilistic modeling

•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forensic science international : genetics 2018-09, Vol.36, p.205-212
Hauptverfasser: Stokes, Nancy A., Stanciu, Cristina E., Brocato, Emily R., Ehrhardt, Christopher J., Greenspoon, Susan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue
container_start_page 205
container_title Forensic science international : genetics
container_volume 36
creator Stokes, Nancy A.
Stanciu, Cristina E.
Brocato, Emily R.
Ehrhardt, Christopher J.
Greenspoon, Susan A.
description •A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample. Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.
doi_str_mv 10.1016/j.fsigen.2018.07.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1872497318301145</els_id><sourcerecordid>2078584545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXwDRDykUuCHcd_9oJUlRaQqnIAzpZjj5dZJXGwsxV8e7xsKXDpyaPxe288_hHykrOWM67e7NpYcAtz2zFuWqZbxvpH5JQbbRomOvX4d901_UaLE_KslB1jcqO5fEpORC1lL7pT4j7jtIwY0bsV00xTpD7VDvyg727O6ZJTxBEK3RectzTmNK8U5kA9jCMtsLh89Lnaq-LBDThiWdHTKQUYq-k5eRLdWODF3XlGvl5dfrn40Fx_ev_x4vy68b0SaxPZ4KLhkRupQWkOIqqgw8YIPiivot4E4JpraTRjejA86OhEYI4JKXRQ4oy8PeYu-2GC4GFesxvtknFy-adNDu3_NzN-s9t0axXvmDamBry-C8jp-x7Kaicshz3dDGlf7EElTS97WaX9UepzKiVDvB_DmT3QsTt7pGMPdCzTttKptlf_PvHe9AfH3x2gftQtQrbFI8weAmbwqw0JH57wCyDspNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078584545</pqid></control><display><type>article</type><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</creator><creatorcontrib>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</creatorcontrib><description>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample. Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</description><identifier>ISSN: 1872-4973</identifier><identifier>EISSN: 1878-0326</identifier><identifier>DOI: 10.1016/j.fsigen.2018.07.004</identifier><identifier>PMID: 30055432</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antibodies ; Blood Chemical Analysis ; Cell Separation ; DNA - analysis ; DNA Fingerprinting - methods ; DNA mixtures ; Flow Cytometry ; Fluorescence ; Humans ; Microsatellite Repeats ; Models, Statistical ; Molecular Probes ; Probabilistic modeling ; Real-Time Polymerase Chain Reaction ; TrueAllele</subject><ispartof>Forensic science international : genetics, 2018-09, Vol.36, p.205-212</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</citedby><cites>FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fsigen.2018.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30055432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stokes, Nancy A.</creatorcontrib><creatorcontrib>Stanciu, Cristina E.</creatorcontrib><creatorcontrib>Brocato, Emily R.</creatorcontrib><creatorcontrib>Ehrhardt, Christopher J.</creatorcontrib><creatorcontrib>Greenspoon, Susan A.</creatorcontrib><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><title>Forensic science international : genetics</title><addtitle>Forensic Sci Int Genet</addtitle><description>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample. Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</description><subject>Antibodies</subject><subject>Blood Chemical Analysis</subject><subject>Cell Separation</subject><subject>DNA - analysis</subject><subject>DNA Fingerprinting - methods</subject><subject>DNA mixtures</subject><subject>Flow Cytometry</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Microsatellite Repeats</subject><subject>Models, Statistical</subject><subject>Molecular Probes</subject><subject>Probabilistic modeling</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>TrueAllele</subject><issn>1872-4973</issn><issn>1878-0326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EoqXwDRDykUuCHcd_9oJUlRaQqnIAzpZjj5dZJXGwsxV8e7xsKXDpyaPxe288_hHykrOWM67e7NpYcAtz2zFuWqZbxvpH5JQbbRomOvX4d901_UaLE_KslB1jcqO5fEpORC1lL7pT4j7jtIwY0bsV00xTpD7VDvyg727O6ZJTxBEK3RectzTmNK8U5kA9jCMtsLh89Lnaq-LBDThiWdHTKQUYq-k5eRLdWODF3XlGvl5dfrn40Fx_ev_x4vy68b0SaxPZ4KLhkRupQWkOIqqgw8YIPiivot4E4JpraTRjejA86OhEYI4JKXRQ4oy8PeYu-2GC4GFesxvtknFy-adNDu3_NzN-s9t0axXvmDamBry-C8jp-x7Kaicshz3dDGlf7EElTS97WaX9UepzKiVDvB_DmT3QsTt7pGMPdCzTttKptlf_PvHe9AfH3x2gftQtQrbFI8weAmbwqw0JH57wCyDspNY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Stokes, Nancy A.</creator><creator>Stanciu, Cristina E.</creator><creator>Brocato, Emily R.</creator><creator>Ehrhardt, Christopher J.</creator><creator>Greenspoon, Susan A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</title><author>Stokes, Nancy A. ; Stanciu, Cristina E. ; Brocato, Emily R. ; Ehrhardt, Christopher J. ; Greenspoon, Susan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f0baf81f1857e671e3f6d7d9831b6c6f79de1717587007b81d7fa3d0a03537d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibodies</topic><topic>Blood Chemical Analysis</topic><topic>Cell Separation</topic><topic>DNA - analysis</topic><topic>DNA Fingerprinting - methods</topic><topic>DNA mixtures</topic><topic>Flow Cytometry</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Microsatellite Repeats</topic><topic>Models, Statistical</topic><topic>Molecular Probes</topic><topic>Probabilistic modeling</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>TrueAllele</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stokes, Nancy A.</creatorcontrib><creatorcontrib>Stanciu, Cristina E.</creatorcontrib><creatorcontrib>Brocato, Emily R.</creatorcontrib><creatorcontrib>Ehrhardt, Christopher J.</creatorcontrib><creatorcontrib>Greenspoon, Susan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Forensic science international : genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stokes, Nancy A.</au><au>Stanciu, Cristina E.</au><au>Brocato, Emily R.</au><au>Ehrhardt, Christopher J.</au><au>Greenspoon, Susan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplification of complex DNA profiles using front end cell separation and probabilistic modeling</atitle><jtitle>Forensic science international : genetics</jtitle><addtitle>Forensic Sci Int Genet</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>36</volume><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>1872-4973</issn><eissn>1878-0326</eissn><abstract>•A series of dried blood mixtures containing as many as five individuals were analyzed.•Contributor cell populations were labeled with antibody probes and separated into two fractions.•DNA profiles from each fraction could be interpreted manually or using probabilistic modeling.•This approach can increase probative value of mixture evidence by associating many of the contributors to the sample. Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s association to the mixture and the loss of probative data. The purpose of this study was to test a front-end cell separation workflow on complex mixtures containing as many as five contributors. Our approach involved selectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting (FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling software, TrueAllele® Casework. Results showed that antibody labelling and FACS separation of target populations yielded simplified STR profiles that could be more easily interpreted using conventional procedures. Additionally, TrueAllele® analysis of STR profiles from sorted cell fractions increased statistical strength for the association of most of the original contributors interpreted from the original mixtures.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30055432</pmid><doi>10.1016/j.fsigen.2018.07.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1872-4973
ispartof Forensic science international : genetics, 2018-09, Vol.36, p.205-212
issn 1872-4973
1878-0326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120788
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Antibodies
Blood Chemical Analysis
Cell Separation
DNA - analysis
DNA Fingerprinting - methods
DNA mixtures
Flow Cytometry
Fluorescence
Humans
Microsatellite Repeats
Models, Statistical
Molecular Probes
Probabilistic modeling
Real-Time Polymerase Chain Reaction
TrueAllele
title Simplification of complex DNA profiles using front end cell separation and probabilistic modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplification%20of%20complex%20DNA%20profiles%20using%20front%20end%20cell%20separation%20and%20probabilistic%20modeling&rft.jtitle=Forensic%20science%20international%20:%20genetics&rft.au=Stokes,%20Nancy%20A.&rft.date=2018-09-01&rft.volume=36&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=1872-4973&rft.eissn=1878-0326&rft_id=info:doi/10.1016/j.fsigen.2018.07.004&rft_dat=%3Cproquest_pubme%3E2078584545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078584545&rft_id=info:pmid/30055432&rft_els_id=S1872497318301145&rfr_iscdi=true