Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots

Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-08, Vol.12 (8), p.8104-8114
Hauptverfasser: Bahmani Jalali, Houman, Mohammadi Aria, Mohammad, Dikbas, Ugur Meric, Sadeghi, Sadra, Ganesh Kumar, Baskaran, Sahin, Mehmet, Kavakli, Ibrahim Halil, Ow-Yang, Cleva W, Nizamoglu, Sedat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8114
container_issue 8
container_start_page 8104
container_title ACS nano
container_volume 12
creator Bahmani Jalali, Houman
Mohammadi Aria, Mohammad
Dikbas, Ugur Meric
Sadeghi, Sadra
Ganesh Kumar, Baskaran
Sahin, Mehmet
Kavakli, Ibrahim Halil
Ow-Yang, Cleva W
Nizamoglu, Sedat
description Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.
doi_str_mv 10.1021/acsnano.8b02976
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b54085228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMobk6ffZO-S7ckbZP2RdA5tTD8gA18C2mSbhlrMpp0sP_eyObQB5_uhXvOuYcfANcIDhHEaMSFM9zYYV5BXFByAvqoSEgMc_J5etwz1AMXzq0gzGhOyTnoJRBiSCnsg3JS10p4vVXRq-pavo7el9Zb53XTrbnX1kRzp80iKo3UXRM_cKdkNNttVFyW0UfHje-a6NF6dwnOar526uowB2D-NJmNX-Lp23M5vp_GPMWFj_Mqr0Sd5AlSgqcZJInIUkGrULPiGClCocJEIl5RJAUVWIpUZVJiUmQwzGQA7va5m65qlBTK-FCbbVrd8HbHLNfs78XoJVvYLSMIUZoWIWC0DxCtda5V9dGLIPumyg5U2YFqcNz8fnnU_2AMgtu9IDjZynatCQT-jfsCWyGFUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</creator><creatorcontrib>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</creatorcontrib><description>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b02976</identifier><identifier>PMID: 30020770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Proliferation ; Cell Survival ; Electrodes ; Indium - chemistry ; Mice ; Microscopy, Fluorescence ; Neurons - chemistry ; Particle Size ; PC12 Cells ; Phosphines - chemistry ; Photochemical Processes ; Quantum Dots - chemistry ; Rats ; Surface Properties ; Zinc Oxide - chemistry</subject><ispartof>ACS nano, 2018-08, Vol.12 (8), p.8104-8114</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</citedby><cites>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</cites><orcidid>0000-0003-4705-499X ; 0000-0002-9419-1711 ; 0000-0003-0394-5790 ; 0000-0002-8569-1626 ; 0000-0002-2909-0957 ; 0000-0001-7212-9098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b02976$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b02976$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30020770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahmani Jalali, Houman</creatorcontrib><creatorcontrib>Mohammadi Aria, Mohammad</creatorcontrib><creatorcontrib>Dikbas, Ugur Meric</creatorcontrib><creatorcontrib>Sadeghi, Sadra</creatorcontrib><creatorcontrib>Ganesh Kumar, Baskaran</creatorcontrib><creatorcontrib>Sahin, Mehmet</creatorcontrib><creatorcontrib>Kavakli, Ibrahim Halil</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</description><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Electrodes</subject><subject>Indium - chemistry</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Neurons - chemistry</subject><subject>Particle Size</subject><subject>PC12 Cells</subject><subject>Phosphines - chemistry</subject><subject>Photochemical Processes</subject><subject>Quantum Dots - chemistry</subject><subject>Rats</subject><subject>Surface Properties</subject><subject>Zinc Oxide - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN1LwzAUxYMobk6ffZO-S7ckbZP2RdA5tTD8gA18C2mSbhlrMpp0sP_eyObQB5_uhXvOuYcfANcIDhHEaMSFM9zYYV5BXFByAvqoSEgMc_J5etwz1AMXzq0gzGhOyTnoJRBiSCnsg3JS10p4vVXRq-pavo7el9Zb53XTrbnX1kRzp80iKo3UXRM_cKdkNNttVFyW0UfHje-a6NF6dwnOar526uowB2D-NJmNX-Lp23M5vp_GPMWFj_Mqr0Sd5AlSgqcZJInIUkGrULPiGClCocJEIl5RJAUVWIpUZVJiUmQwzGQA7va5m65qlBTK-FCbbVrd8HbHLNfs78XoJVvYLSMIUZoWIWC0DxCtda5V9dGLIPumyg5U2YFqcNz8fnnU_2AMgtu9IDjZynatCQT-jfsCWyGFUA</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Bahmani Jalali, Houman</creator><creator>Mohammadi Aria, Mohammad</creator><creator>Dikbas, Ugur Meric</creator><creator>Sadeghi, Sadra</creator><creator>Ganesh Kumar, Baskaran</creator><creator>Sahin, Mehmet</creator><creator>Kavakli, Ibrahim Halil</creator><creator>Ow-Yang, Cleva W</creator><creator>Nizamoglu, Sedat</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4705-499X</orcidid><orcidid>https://orcid.org/0000-0002-9419-1711</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-8569-1626</orcidid><orcidid>https://orcid.org/0000-0002-2909-0957</orcidid><orcidid>https://orcid.org/0000-0001-7212-9098</orcidid></search><sort><creationdate>20180828</creationdate><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><author>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Electrodes</topic><topic>Indium - chemistry</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Neurons - chemistry</topic><topic>Particle Size</topic><topic>PC12 Cells</topic><topic>Phosphines - chemistry</topic><topic>Photochemical Processes</topic><topic>Quantum Dots - chemistry</topic><topic>Rats</topic><topic>Surface Properties</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmani Jalali, Houman</creatorcontrib><creatorcontrib>Mohammadi Aria, Mohammad</creatorcontrib><creatorcontrib>Dikbas, Ugur Meric</creatorcontrib><creatorcontrib>Sadeghi, Sadra</creatorcontrib><creatorcontrib>Ganesh Kumar, Baskaran</creatorcontrib><creatorcontrib>Sahin, Mehmet</creatorcontrib><creatorcontrib>Kavakli, Ibrahim Halil</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmani Jalali, Houman</au><au>Mohammadi Aria, Mohammad</au><au>Dikbas, Ugur Meric</au><au>Sadeghi, Sadra</au><au>Ganesh Kumar, Baskaran</au><au>Sahin, Mehmet</au><au>Kavakli, Ibrahim Halil</au><au>Ow-Yang, Cleva W</au><au>Nizamoglu, Sedat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>8104</spage><epage>8114</epage><pages>8104-8114</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30020770</pmid><doi>10.1021/acsnano.8b02976</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4705-499X</orcidid><orcidid>https://orcid.org/0000-0002-9419-1711</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-8569-1626</orcidid><orcidid>https://orcid.org/0000-0002-2909-0957</orcidid><orcidid>https://orcid.org/0000-0001-7212-9098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-08, Vol.12 (8), p.8104-8114
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117749
source MEDLINE; ACS Publications
subjects Animals
Cell Proliferation
Cell Survival
Electrodes
Indium - chemistry
Mice
Microscopy, Fluorescence
Neurons - chemistry
Particle Size
PC12 Cells
Phosphines - chemistry
Photochemical Processes
Quantum Dots - chemistry
Rats
Surface Properties
Zinc Oxide - chemistry
title Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Neural%20Photostimulation%20Using%20Indium-Based%20Type-II%20Quantum%20Dots&rft.jtitle=ACS%20nano&rft.au=Bahmani%20Jalali,%20Houman&rft.date=2018-08-28&rft.volume=12&rft.issue=8&rft.spage=8104&rft.epage=8114&rft.pages=8104-8114&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b02976&rft_dat=%3Cacs_pubme%3Eb54085228%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30020770&rfr_iscdi=true