Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots
Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the b...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-08, Vol.12 (8), p.8104-8114 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8114 |
---|---|
container_issue | 8 |
container_start_page | 8104 |
container_title | ACS nano |
container_volume | 12 |
creator | Bahmani Jalali, Houman Mohammadi Aria, Mohammad Dikbas, Ugur Meric Sadeghi, Sadra Ganesh Kumar, Baskaran Sahin, Mehmet Kavakli, Ibrahim Halil Ow-Yang, Cleva W Nizamoglu, Sedat |
description | Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses. |
doi_str_mv | 10.1021/acsnano.8b02976 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b54085228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMobk6ffZO-S7ckbZP2RdA5tTD8gA18C2mSbhlrMpp0sP_eyObQB5_uhXvOuYcfANcIDhHEaMSFM9zYYV5BXFByAvqoSEgMc_J5etwz1AMXzq0gzGhOyTnoJRBiSCnsg3JS10p4vVXRq-pavo7el9Zb53XTrbnX1kRzp80iKo3UXRM_cKdkNNttVFyW0UfHje-a6NF6dwnOar526uowB2D-NJmNX-Lp23M5vp_GPMWFj_Mqr0Sd5AlSgqcZJInIUkGrULPiGClCocJEIl5RJAUVWIpUZVJiUmQwzGQA7va5m65qlBTK-FCbbVrd8HbHLNfs78XoJVvYLSMIUZoWIWC0DxCtda5V9dGLIPumyg5U2YFqcNz8fnnU_2AMgtu9IDjZynatCQT-jfsCWyGFUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</creator><creatorcontrib>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</creatorcontrib><description>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b02976</identifier><identifier>PMID: 30020770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Proliferation ; Cell Survival ; Electrodes ; Indium - chemistry ; Mice ; Microscopy, Fluorescence ; Neurons - chemistry ; Particle Size ; PC12 Cells ; Phosphines - chemistry ; Photochemical Processes ; Quantum Dots - chemistry ; Rats ; Surface Properties ; Zinc Oxide - chemistry</subject><ispartof>ACS nano, 2018-08, Vol.12 (8), p.8104-8114</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</citedby><cites>FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</cites><orcidid>0000-0003-4705-499X ; 0000-0002-9419-1711 ; 0000-0003-0394-5790 ; 0000-0002-8569-1626 ; 0000-0002-2909-0957 ; 0000-0001-7212-9098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b02976$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b02976$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30020770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahmani Jalali, Houman</creatorcontrib><creatorcontrib>Mohammadi Aria, Mohammad</creatorcontrib><creatorcontrib>Dikbas, Ugur Meric</creatorcontrib><creatorcontrib>Sadeghi, Sadra</creatorcontrib><creatorcontrib>Ganesh Kumar, Baskaran</creatorcontrib><creatorcontrib>Sahin, Mehmet</creatorcontrib><creatorcontrib>Kavakli, Ibrahim Halil</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</description><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Electrodes</subject><subject>Indium - chemistry</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Neurons - chemistry</subject><subject>Particle Size</subject><subject>PC12 Cells</subject><subject>Phosphines - chemistry</subject><subject>Photochemical Processes</subject><subject>Quantum Dots - chemistry</subject><subject>Rats</subject><subject>Surface Properties</subject><subject>Zinc Oxide - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN1LwzAUxYMobk6ffZO-S7ckbZP2RdA5tTD8gA18C2mSbhlrMpp0sP_eyObQB5_uhXvOuYcfANcIDhHEaMSFM9zYYV5BXFByAvqoSEgMc_J5etwz1AMXzq0gzGhOyTnoJRBiSCnsg3JS10p4vVXRq-pavo7el9Zb53XTrbnX1kRzp80iKo3UXRM_cKdkNNttVFyW0UfHje-a6NF6dwnOar526uowB2D-NJmNX-Lp23M5vp_GPMWFj_Mqr0Sd5AlSgqcZJInIUkGrULPiGClCocJEIl5RJAUVWIpUZVJiUmQwzGQA7va5m65qlBTK-FCbbVrd8HbHLNfs78XoJVvYLSMIUZoWIWC0DxCtda5V9dGLIPumyg5U2YFqcNz8fnnU_2AMgtu9IDjZynatCQT-jfsCWyGFUA</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Bahmani Jalali, Houman</creator><creator>Mohammadi Aria, Mohammad</creator><creator>Dikbas, Ugur Meric</creator><creator>Sadeghi, Sadra</creator><creator>Ganesh Kumar, Baskaran</creator><creator>Sahin, Mehmet</creator><creator>Kavakli, Ibrahim Halil</creator><creator>Ow-Yang, Cleva W</creator><creator>Nizamoglu, Sedat</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4705-499X</orcidid><orcidid>https://orcid.org/0000-0002-9419-1711</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-8569-1626</orcidid><orcidid>https://orcid.org/0000-0002-2909-0957</orcidid><orcidid>https://orcid.org/0000-0001-7212-9098</orcidid></search><sort><creationdate>20180828</creationdate><title>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</title><author>Bahmani Jalali, Houman ; Mohammadi Aria, Mohammad ; Dikbas, Ugur Meric ; Sadeghi, Sadra ; Ganesh Kumar, Baskaran ; Sahin, Mehmet ; Kavakli, Ibrahim Halil ; Ow-Yang, Cleva W ; Nizamoglu, Sedat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-8b8bcf3831eca45063c54c7b085ba21e670e26d1ab71dc7c2dc4e5dd269505dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Electrodes</topic><topic>Indium - chemistry</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Neurons - chemistry</topic><topic>Particle Size</topic><topic>PC12 Cells</topic><topic>Phosphines - chemistry</topic><topic>Photochemical Processes</topic><topic>Quantum Dots - chemistry</topic><topic>Rats</topic><topic>Surface Properties</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmani Jalali, Houman</creatorcontrib><creatorcontrib>Mohammadi Aria, Mohammad</creatorcontrib><creatorcontrib>Dikbas, Ugur Meric</creatorcontrib><creatorcontrib>Sadeghi, Sadra</creatorcontrib><creatorcontrib>Ganesh Kumar, Baskaran</creatorcontrib><creatorcontrib>Sahin, Mehmet</creatorcontrib><creatorcontrib>Kavakli, Ibrahim Halil</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmani Jalali, Houman</au><au>Mohammadi Aria, Mohammad</au><au>Dikbas, Ugur Meric</au><au>Sadeghi, Sadra</au><au>Ganesh Kumar, Baskaran</au><au>Sahin, Mehmet</au><au>Kavakli, Ibrahim Halil</au><au>Ow-Yang, Cleva W</au><au>Nizamoglu, Sedat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>8104</spage><epage>8114</epage><pages>8104-8114</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm–2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30020770</pmid><doi>10.1021/acsnano.8b02976</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4705-499X</orcidid><orcidid>https://orcid.org/0000-0002-9419-1711</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-8569-1626</orcidid><orcidid>https://orcid.org/0000-0002-2909-0957</orcidid><orcidid>https://orcid.org/0000-0001-7212-9098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-08, Vol.12 (8), p.8104-8114 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117749 |
source | MEDLINE; ACS Publications |
subjects | Animals Cell Proliferation Cell Survival Electrodes Indium - chemistry Mice Microscopy, Fluorescence Neurons - chemistry Particle Size PC12 Cells Phosphines - chemistry Photochemical Processes Quantum Dots - chemistry Rats Surface Properties Zinc Oxide - chemistry |
title | Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Neural%20Photostimulation%20Using%20Indium-Based%20Type-II%20Quantum%20Dots&rft.jtitle=ACS%20nano&rft.au=Bahmani%20Jalali,%20Houman&rft.date=2018-08-28&rft.volume=12&rft.issue=8&rft.spage=8104&rft.epage=8114&rft.pages=8104-8114&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b02976&rft_dat=%3Cacs_pubme%3Eb54085228%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30020770&rfr_iscdi=true |