RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers
Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E on...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2018-09, Vol.20 (9), p.1064-1073 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1073 |
---|---|
container_issue | 9 |
container_start_page | 1064 |
container_title | Nature cell biology |
container_volume | 20 |
creator | Nichols, Robert J. Haderk, Franziska Stahlhut, Carlos Schulze, Christopher J. Hemmati, Golzar Wildes, David Tzitzilonis, Christos Mordec, Kasia Marquez, Abby Romero, Jason Hsieh, Tientien Zaman, Aubhishek Olivas, Victor McCoach, Caroline Blakely, Collin M. Wang, Zhengping Kiss, Gert Koltun, Elena S. Gill, Adrian L. Singh, Mallika Goldsmith, Mark A. Smith, Jacqueline A. M. Bivona, Trever G. |
description | Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF
V600E
-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by
PTPN11
) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS
G12C
). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.
Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS. |
doi_str_mv | 10.1038/s41556-018-0169-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572830657</galeid><sourcerecordid>A572830657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</originalsourceid><addsrcrecordid>eNp1kt1u1DAQhSMEou3CA3CDLHEDEil24p_kBmmpWFqpArQL15bXnmRdJXawk4q-fR22tCwCWZatmW-OPaOTZS8IPiW4rN5FShjjOSZV2rzOyaPsmFDBc8pF_Xi-c5aLsi6OspMYrzAmlGLxNDsqMcFUFPQ469fLDXKT7sCP1gDSN7qzrkWTMxA6CxGNO0Cb868FGnY-Djs1qgjIwACJcBqQb1A_jcqN6MN6ucrfos8rkiPlDErSuQn2GhzSKqEhPsueNKqL8PzuXGTfVx-_nZ3nl18-XZwtL3PNSzHmVBlqtpwqihVsiWCkrLFhhaoFM7QxuilTUHPFKiZo0zTllup6q5QStagLXS6y93vdYdr2YDS4MahODsH2KtxIr6w8zDi7k62_lpwQVlQ4Cby-Ewj-xwRxlL2NGrpOOfBTlAWuqqJmJP1skb36C73yU3CpvUTVjGFSMvFAtaoDaV3j07t6FpVLJoqqxPwXdfoPKi0DvdXeQWNT_KDgzUFBYkb4ObZqilFebNaHLNmzOvgYAzT38yBYzn6Sez_J5Cc5-0nOzb38c5D3Fb8NlIBiD8SUci2Eh-7_r3oLrHPSqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095501357</pqid></control><display><type>article</type><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</creator><creatorcontrib>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</creatorcontrib><description>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF
V600E
-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by
PTPN11
) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS
G12C
). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.
Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-018-0169-1</identifier><identifier>PMID: 30104724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/44 ; 13/95 ; 631/67 ; 631/67/1059/602 ; 631/67/68 ; 631/80/86 ; Allosteric properties ; Analysis ; Animals ; Antineoplastic Agents - pharmacology ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Cancer ; Cancer Research ; Cancer treatment ; Cell Biology ; Cell Line, Tumor ; Cellular signal transduction ; Coding ; Cycles ; Dependence ; Developmental Biology ; Enzyme Inhibitors - pharmacology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Genetic Predisposition to Disease ; GTPase-activating protein ; Guanosine triphosphatases ; Guanosine triphosphate ; Guanosine Triphosphate - metabolism ; HEK293 Cells ; Humans ; Inhibitors ; K-Ras protein ; Life Sciences ; MAP kinase ; MEK inhibitors ; Metabolic pathways ; Mice, Inbred BALB C ; Mice, Nude ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mutation ; Neoplasms - drug therapy ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - pathology ; Neurofibromin 1 ; Neurofibromin 1 - genetics ; Nucleotides ; Phenotype ; Phosphatase ; Phosphatases ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) - genetics ; raf Kinases - metabolism ; Raf protein ; Signal Transduction ; SOS1 Protein - metabolism ; Stem Cells ; Tumor Burden - drug effects ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Nature cell biology, 2018-09, Vol.20 (9), p.1064-1073</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</citedby><cites>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</cites><orcidid>0000-0001-5028-8725 ; 0000-0001-5734-4128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-018-0169-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-018-0169-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Haderk, Franziska</creatorcontrib><creatorcontrib>Stahlhut, Carlos</creatorcontrib><creatorcontrib>Schulze, Christopher J.</creatorcontrib><creatorcontrib>Hemmati, Golzar</creatorcontrib><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Tzitzilonis, Christos</creatorcontrib><creatorcontrib>Mordec, Kasia</creatorcontrib><creatorcontrib>Marquez, Abby</creatorcontrib><creatorcontrib>Romero, Jason</creatorcontrib><creatorcontrib>Hsieh, Tientien</creatorcontrib><creatorcontrib>Zaman, Aubhishek</creatorcontrib><creatorcontrib>Olivas, Victor</creatorcontrib><creatorcontrib>McCoach, Caroline</creatorcontrib><creatorcontrib>Blakely, Collin M.</creatorcontrib><creatorcontrib>Wang, Zhengping</creatorcontrib><creatorcontrib>Kiss, Gert</creatorcontrib><creatorcontrib>Koltun, Elena S.</creatorcontrib><creatorcontrib>Gill, Adrian L.</creatorcontrib><creatorcontrib>Singh, Mallika</creatorcontrib><creatorcontrib>Goldsmith, Mark A.</creatorcontrib><creatorcontrib>Smith, Jacqueline A. M.</creatorcontrib><creatorcontrib>Bivona, Trever G.</creatorcontrib><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF
V600E
-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by
PTPN11
) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS
G12C
). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.
Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</description><subject>13/106</subject><subject>13/44</subject><subject>13/95</subject><subject>631/67</subject><subject>631/67/1059/602</subject><subject>631/67/68</subject><subject>631/80/86</subject><subject>Allosteric properties</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cancer treatment</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cellular signal transduction</subject><subject>Coding</subject><subject>Cycles</subject><subject>Dependence</subject><subject>Developmental Biology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Genetic Predisposition to Disease</subject><subject>GTPase-activating protein</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>K-Ras protein</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>MEK inhibitors</subject><subject>Metabolic pathways</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Neurofibromin 1</subject><subject>Neurofibromin 1 - genetics</subject><subject>Nucleotides</subject><subject>Phenotype</subject><subject>Phosphatase</subject><subject>Phosphatases</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>raf Kinases - metabolism</subject><subject>Raf protein</subject><subject>Signal Transduction</subject><subject>SOS1 Protein - metabolism</subject><subject>Stem Cells</subject><subject>Tumor Burden - drug effects</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kt1u1DAQhSMEou3CA3CDLHEDEil24p_kBmmpWFqpArQL15bXnmRdJXawk4q-fR22tCwCWZatmW-OPaOTZS8IPiW4rN5FShjjOSZV2rzOyaPsmFDBc8pF_Xi-c5aLsi6OspMYrzAmlGLxNDsqMcFUFPQ469fLDXKT7sCP1gDSN7qzrkWTMxA6CxGNO0Cb868FGnY-Djs1qgjIwACJcBqQb1A_jcqN6MN6ucrfos8rkiPlDErSuQn2GhzSKqEhPsueNKqL8PzuXGTfVx-_nZ3nl18-XZwtL3PNSzHmVBlqtpwqihVsiWCkrLFhhaoFM7QxuilTUHPFKiZo0zTllup6q5QStagLXS6y93vdYdr2YDS4MahODsH2KtxIr6w8zDi7k62_lpwQVlQ4Cby-Ewj-xwRxlL2NGrpOOfBTlAWuqqJmJP1skb36C73yU3CpvUTVjGFSMvFAtaoDaV3j07t6FpVLJoqqxPwXdfoPKi0DvdXeQWNT_KDgzUFBYkb4ObZqilFebNaHLNmzOvgYAzT38yBYzn6Sez_J5Cc5-0nOzb38c5D3Fb8NlIBiD8SUci2Eh-7_r3oLrHPSqA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Nichols, Robert J.</creator><creator>Haderk, Franziska</creator><creator>Stahlhut, Carlos</creator><creator>Schulze, Christopher J.</creator><creator>Hemmati, Golzar</creator><creator>Wildes, David</creator><creator>Tzitzilonis, Christos</creator><creator>Mordec, Kasia</creator><creator>Marquez, Abby</creator><creator>Romero, Jason</creator><creator>Hsieh, Tientien</creator><creator>Zaman, Aubhishek</creator><creator>Olivas, Victor</creator><creator>McCoach, Caroline</creator><creator>Blakely, Collin M.</creator><creator>Wang, Zhengping</creator><creator>Kiss, Gert</creator><creator>Koltun, Elena S.</creator><creator>Gill, Adrian L.</creator><creator>Singh, Mallika</creator><creator>Goldsmith, Mark A.</creator><creator>Smith, Jacqueline A. M.</creator><creator>Bivona, Trever G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5028-8725</orcidid><orcidid>https://orcid.org/0000-0001-5734-4128</orcidid></search><sort><creationdate>20180901</creationdate><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><author>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>13/44</topic><topic>13/95</topic><topic>631/67</topic><topic>631/67/1059/602</topic><topic>631/67/68</topic><topic>631/80/86</topic><topic>Allosteric properties</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cancer treatment</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cellular signal transduction</topic><topic>Coding</topic><topic>Cycles</topic><topic>Dependence</topic><topic>Developmental Biology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Genetic Predisposition to Disease</topic><topic>GTPase-activating protein</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>K-Ras protein</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>MEK inhibitors</topic><topic>Metabolic pathways</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Neurofibromin 1</topic><topic>Neurofibromin 1 - genetics</topic><topic>Nucleotides</topic><topic>Phenotype</topic><topic>Phosphatase</topic><topic>Phosphatases</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>raf Kinases - metabolism</topic><topic>Raf protein</topic><topic>Signal Transduction</topic><topic>SOS1 Protein - metabolism</topic><topic>Stem Cells</topic><topic>Tumor Burden - drug effects</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Haderk, Franziska</creatorcontrib><creatorcontrib>Stahlhut, Carlos</creatorcontrib><creatorcontrib>Schulze, Christopher J.</creatorcontrib><creatorcontrib>Hemmati, Golzar</creatorcontrib><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Tzitzilonis, Christos</creatorcontrib><creatorcontrib>Mordec, Kasia</creatorcontrib><creatorcontrib>Marquez, Abby</creatorcontrib><creatorcontrib>Romero, Jason</creatorcontrib><creatorcontrib>Hsieh, Tientien</creatorcontrib><creatorcontrib>Zaman, Aubhishek</creatorcontrib><creatorcontrib>Olivas, Victor</creatorcontrib><creatorcontrib>McCoach, Caroline</creatorcontrib><creatorcontrib>Blakely, Collin M.</creatorcontrib><creatorcontrib>Wang, Zhengping</creatorcontrib><creatorcontrib>Kiss, Gert</creatorcontrib><creatorcontrib>Koltun, Elena S.</creatorcontrib><creatorcontrib>Gill, Adrian L.</creatorcontrib><creatorcontrib>Singh, Mallika</creatorcontrib><creatorcontrib>Goldsmith, Mark A.</creatorcontrib><creatorcontrib>Smith, Jacqueline A. M.</creatorcontrib><creatorcontrib>Bivona, Trever G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Robert J.</au><au>Haderk, Franziska</au><au>Stahlhut, Carlos</au><au>Schulze, Christopher J.</au><au>Hemmati, Golzar</au><au>Wildes, David</au><au>Tzitzilonis, Christos</au><au>Mordec, Kasia</au><au>Marquez, Abby</au><au>Romero, Jason</au><au>Hsieh, Tientien</au><au>Zaman, Aubhishek</au><au>Olivas, Victor</au><au>McCoach, Caroline</au><au>Blakely, Collin M.</au><au>Wang, Zhengping</au><au>Kiss, Gert</au><au>Koltun, Elena S.</au><au>Gill, Adrian L.</au><au>Singh, Mallika</au><au>Goldsmith, Mark A.</au><au>Smith, Jacqueline A. M.</au><au>Bivona, Trever G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>20</volume><issue>9</issue><spage>1064</spage><epage>1073</epage><pages>1064-1073</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF
V600E
-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by
PTPN11
) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS
G12C
). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.
Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30104724</pmid><doi>10.1038/s41556-018-0169-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5028-8725</orcidid><orcidid>https://orcid.org/0000-0001-5734-4128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2018-09, Vol.20 (9), p.1064-1073 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115280 |
source | MEDLINE; Nature; SpringerNature Complete Journals |
subjects | 13/106 13/44 13/95 631/67 631/67/1059/602 631/67/68 631/80/86 Allosteric properties Analysis Animals Antineoplastic Agents - pharmacology Biomarkers, Tumor - genetics Biomedical and Life Sciences Cancer Cancer Research Cancer treatment Cell Biology Cell Line, Tumor Cellular signal transduction Coding Cycles Dependence Developmental Biology Enzyme Inhibitors - pharmacology Extracellular Signal-Regulated MAP Kinases - metabolism Genetic Predisposition to Disease GTPase-activating protein Guanosine triphosphatases Guanosine triphosphate Guanosine Triphosphate - metabolism HEK293 Cells Humans Inhibitors K-Ras protein Life Sciences MAP kinase MEK inhibitors Metabolic pathways Mice, Inbred BALB C Mice, Nude Mitogen-Activated Protein Kinase Kinases - metabolism Mutation Neoplasms - drug therapy Neoplasms - enzymology Neoplasms - genetics Neoplasms - pathology Neurofibromin 1 Neurofibromin 1 - genetics Nucleotides Phenotype Phosphatase Phosphatases Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism Proteins Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins p21(ras) - genetics raf Kinases - metabolism Raf protein Signal Transduction SOS1 Protein - metabolism Stem Cells Tumor Burden - drug effects Tumors Xenograft Model Antitumor Assays |
title | RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAS%20nucleotide%20cycling%20underlies%20the%20SHP2%20phosphatase%20dependence%20of%20mutant%20BRAF-,%20NF1-%20and%20RAS-driven%20cancers&rft.jtitle=Nature%20cell%20biology&rft.au=Nichols,%20Robert%20J.&rft.date=2018-09-01&rft.volume=20&rft.issue=9&rft.spage=1064&rft.epage=1073&rft.pages=1064-1073&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-018-0169-1&rft_dat=%3Cgale_pubme%3EA572830657%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095501357&rft_id=info:pmid/30104724&rft_galeid=A572830657&rfr_iscdi=true |