RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2018-09, Vol.20 (9), p.1064-1073
Hauptverfasser: Nichols, Robert J., Haderk, Franziska, Stahlhut, Carlos, Schulze, Christopher J., Hemmati, Golzar, Wildes, David, Tzitzilonis, Christos, Mordec, Kasia, Marquez, Abby, Romero, Jason, Hsieh, Tientien, Zaman, Aubhishek, Olivas, Victor, McCoach, Caroline, Blakely, Collin M., Wang, Zhengping, Kiss, Gert, Koltun, Elena S., Gill, Adrian L., Singh, Mallika, Goldsmith, Mark A., Smith, Jacqueline A. M., Bivona, Trever G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1073
container_issue 9
container_start_page 1064
container_title Nature cell biology
container_volume 20
creator Nichols, Robert J.
Haderk, Franziska
Stahlhut, Carlos
Schulze, Christopher J.
Hemmati, Golzar
Wildes, David
Tzitzilonis, Christos
Mordec, Kasia
Marquez, Abby
Romero, Jason
Hsieh, Tientien
Zaman, Aubhishek
Olivas, Victor
McCoach, Caroline
Blakely, Collin M.
Wang, Zhengping
Kiss, Gert
Koltun, Elena S.
Gill, Adrian L.
Singh, Mallika
Goldsmith, Mark A.
Smith, Jacqueline A. M.
Bivona, Trever G.
description Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11 ) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS G12C ). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers. Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.
doi_str_mv 10.1038/s41556-018-0169-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572830657</galeid><sourcerecordid>A572830657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</originalsourceid><addsrcrecordid>eNp1kt1u1DAQhSMEou3CA3CDLHEDEil24p_kBmmpWFqpArQL15bXnmRdJXawk4q-fR22tCwCWZatmW-OPaOTZS8IPiW4rN5FShjjOSZV2rzOyaPsmFDBc8pF_Xi-c5aLsi6OspMYrzAmlGLxNDsqMcFUFPQ469fLDXKT7sCP1gDSN7qzrkWTMxA6CxGNO0Cb868FGnY-Djs1qgjIwACJcBqQb1A_jcqN6MN6ucrfos8rkiPlDErSuQn2GhzSKqEhPsueNKqL8PzuXGTfVx-_nZ3nl18-XZwtL3PNSzHmVBlqtpwqihVsiWCkrLFhhaoFM7QxuilTUHPFKiZo0zTllup6q5QStagLXS6y93vdYdr2YDS4MahODsH2KtxIr6w8zDi7k62_lpwQVlQ4Cby-Ewj-xwRxlL2NGrpOOfBTlAWuqqJmJP1skb36C73yU3CpvUTVjGFSMvFAtaoDaV3j07t6FpVLJoqqxPwXdfoPKi0DvdXeQWNT_KDgzUFBYkb4ObZqilFebNaHLNmzOvgYAzT38yBYzn6Sez_J5Cc5-0nOzb38c5D3Fb8NlIBiD8SUci2Eh-7_r3oLrHPSqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095501357</pqid></control><display><type>article</type><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</creator><creatorcontrib>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</creatorcontrib><description>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11 ) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS G12C ). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers. Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-018-0169-1</identifier><identifier>PMID: 30104724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/44 ; 13/95 ; 631/67 ; 631/67/1059/602 ; 631/67/68 ; 631/80/86 ; Allosteric properties ; Analysis ; Animals ; Antineoplastic Agents - pharmacology ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Cancer ; Cancer Research ; Cancer treatment ; Cell Biology ; Cell Line, Tumor ; Cellular signal transduction ; Coding ; Cycles ; Dependence ; Developmental Biology ; Enzyme Inhibitors - pharmacology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Genetic Predisposition to Disease ; GTPase-activating protein ; Guanosine triphosphatases ; Guanosine triphosphate ; Guanosine Triphosphate - metabolism ; HEK293 Cells ; Humans ; Inhibitors ; K-Ras protein ; Life Sciences ; MAP kinase ; MEK inhibitors ; Metabolic pathways ; Mice, Inbred BALB C ; Mice, Nude ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mutation ; Neoplasms - drug therapy ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - pathology ; Neurofibromin 1 ; Neurofibromin 1 - genetics ; Nucleotides ; Phenotype ; Phosphatase ; Phosphatases ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists &amp; inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) - genetics ; raf Kinases - metabolism ; Raf protein ; Signal Transduction ; SOS1 Protein - metabolism ; Stem Cells ; Tumor Burden - drug effects ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Nature cell biology, 2018-09, Vol.20 (9), p.1064-1073</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</citedby><cites>FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</cites><orcidid>0000-0001-5028-8725 ; 0000-0001-5734-4128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-018-0169-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-018-0169-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Haderk, Franziska</creatorcontrib><creatorcontrib>Stahlhut, Carlos</creatorcontrib><creatorcontrib>Schulze, Christopher J.</creatorcontrib><creatorcontrib>Hemmati, Golzar</creatorcontrib><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Tzitzilonis, Christos</creatorcontrib><creatorcontrib>Mordec, Kasia</creatorcontrib><creatorcontrib>Marquez, Abby</creatorcontrib><creatorcontrib>Romero, Jason</creatorcontrib><creatorcontrib>Hsieh, Tientien</creatorcontrib><creatorcontrib>Zaman, Aubhishek</creatorcontrib><creatorcontrib>Olivas, Victor</creatorcontrib><creatorcontrib>McCoach, Caroline</creatorcontrib><creatorcontrib>Blakely, Collin M.</creatorcontrib><creatorcontrib>Wang, Zhengping</creatorcontrib><creatorcontrib>Kiss, Gert</creatorcontrib><creatorcontrib>Koltun, Elena S.</creatorcontrib><creatorcontrib>Gill, Adrian L.</creatorcontrib><creatorcontrib>Singh, Mallika</creatorcontrib><creatorcontrib>Goldsmith, Mark A.</creatorcontrib><creatorcontrib>Smith, Jacqueline A. M.</creatorcontrib><creatorcontrib>Bivona, Trever G.</creatorcontrib><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11 ) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS G12C ). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers. Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</description><subject>13/106</subject><subject>13/44</subject><subject>13/95</subject><subject>631/67</subject><subject>631/67/1059/602</subject><subject>631/67/68</subject><subject>631/80/86</subject><subject>Allosteric properties</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cancer treatment</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cellular signal transduction</subject><subject>Coding</subject><subject>Cycles</subject><subject>Dependence</subject><subject>Developmental Biology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Genetic Predisposition to Disease</subject><subject>GTPase-activating protein</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>K-Ras protein</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>MEK inhibitors</subject><subject>Metabolic pathways</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Neurofibromin 1</subject><subject>Neurofibromin 1 - genetics</subject><subject>Nucleotides</subject><subject>Phenotype</subject><subject>Phosphatase</subject><subject>Phosphatases</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists &amp; inhibitors</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>raf Kinases - metabolism</subject><subject>Raf protein</subject><subject>Signal Transduction</subject><subject>SOS1 Protein - metabolism</subject><subject>Stem Cells</subject><subject>Tumor Burden - drug effects</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kt1u1DAQhSMEou3CA3CDLHEDEil24p_kBmmpWFqpArQL15bXnmRdJXawk4q-fR22tCwCWZatmW-OPaOTZS8IPiW4rN5FShjjOSZV2rzOyaPsmFDBc8pF_Xi-c5aLsi6OspMYrzAmlGLxNDsqMcFUFPQ469fLDXKT7sCP1gDSN7qzrkWTMxA6CxGNO0Cb868FGnY-Djs1qgjIwACJcBqQb1A_jcqN6MN6ucrfos8rkiPlDErSuQn2GhzSKqEhPsueNKqL8PzuXGTfVx-_nZ3nl18-XZwtL3PNSzHmVBlqtpwqihVsiWCkrLFhhaoFM7QxuilTUHPFKiZo0zTllup6q5QStagLXS6y93vdYdr2YDS4MahODsH2KtxIr6w8zDi7k62_lpwQVlQ4Cby-Ewj-xwRxlL2NGrpOOfBTlAWuqqJmJP1skb36C73yU3CpvUTVjGFSMvFAtaoDaV3j07t6FpVLJoqqxPwXdfoPKi0DvdXeQWNT_KDgzUFBYkb4ObZqilFebNaHLNmzOvgYAzT38yBYzn6Sez_J5Cc5-0nOzb38c5D3Fb8NlIBiD8SUci2Eh-7_r3oLrHPSqA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Nichols, Robert J.</creator><creator>Haderk, Franziska</creator><creator>Stahlhut, Carlos</creator><creator>Schulze, Christopher J.</creator><creator>Hemmati, Golzar</creator><creator>Wildes, David</creator><creator>Tzitzilonis, Christos</creator><creator>Mordec, Kasia</creator><creator>Marquez, Abby</creator><creator>Romero, Jason</creator><creator>Hsieh, Tientien</creator><creator>Zaman, Aubhishek</creator><creator>Olivas, Victor</creator><creator>McCoach, Caroline</creator><creator>Blakely, Collin M.</creator><creator>Wang, Zhengping</creator><creator>Kiss, Gert</creator><creator>Koltun, Elena S.</creator><creator>Gill, Adrian L.</creator><creator>Singh, Mallika</creator><creator>Goldsmith, Mark A.</creator><creator>Smith, Jacqueline A. M.</creator><creator>Bivona, Trever G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5028-8725</orcidid><orcidid>https://orcid.org/0000-0001-5734-4128</orcidid></search><sort><creationdate>20180901</creationdate><title>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</title><author>Nichols, Robert J. ; Haderk, Franziska ; Stahlhut, Carlos ; Schulze, Christopher J. ; Hemmati, Golzar ; Wildes, David ; Tzitzilonis, Christos ; Mordec, Kasia ; Marquez, Abby ; Romero, Jason ; Hsieh, Tientien ; Zaman, Aubhishek ; Olivas, Victor ; McCoach, Caroline ; Blakely, Collin M. ; Wang, Zhengping ; Kiss, Gert ; Koltun, Elena S. ; Gill, Adrian L. ; Singh, Mallika ; Goldsmith, Mark A. ; Smith, Jacqueline A. M. ; Bivona, Trever G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-4ad4db64a40aeb1751390d52a975d4fdcf3175c6a58574fff3b4c9baaa79792c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>13/44</topic><topic>13/95</topic><topic>631/67</topic><topic>631/67/1059/602</topic><topic>631/67/68</topic><topic>631/80/86</topic><topic>Allosteric properties</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cancer treatment</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cellular signal transduction</topic><topic>Coding</topic><topic>Cycles</topic><topic>Dependence</topic><topic>Developmental Biology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Genetic Predisposition to Disease</topic><topic>GTPase-activating protein</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>K-Ras protein</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>MEK inhibitors</topic><topic>Metabolic pathways</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Neurofibromin 1</topic><topic>Neurofibromin 1 - genetics</topic><topic>Nucleotides</topic><topic>Phenotype</topic><topic>Phosphatase</topic><topic>Phosphatases</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists &amp; inhibitors</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>raf Kinases - metabolism</topic><topic>Raf protein</topic><topic>Signal Transduction</topic><topic>SOS1 Protein - metabolism</topic><topic>Stem Cells</topic><topic>Tumor Burden - drug effects</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Robert J.</creatorcontrib><creatorcontrib>Haderk, Franziska</creatorcontrib><creatorcontrib>Stahlhut, Carlos</creatorcontrib><creatorcontrib>Schulze, Christopher J.</creatorcontrib><creatorcontrib>Hemmati, Golzar</creatorcontrib><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Tzitzilonis, Christos</creatorcontrib><creatorcontrib>Mordec, Kasia</creatorcontrib><creatorcontrib>Marquez, Abby</creatorcontrib><creatorcontrib>Romero, Jason</creatorcontrib><creatorcontrib>Hsieh, Tientien</creatorcontrib><creatorcontrib>Zaman, Aubhishek</creatorcontrib><creatorcontrib>Olivas, Victor</creatorcontrib><creatorcontrib>McCoach, Caroline</creatorcontrib><creatorcontrib>Blakely, Collin M.</creatorcontrib><creatorcontrib>Wang, Zhengping</creatorcontrib><creatorcontrib>Kiss, Gert</creatorcontrib><creatorcontrib>Koltun, Elena S.</creatorcontrib><creatorcontrib>Gill, Adrian L.</creatorcontrib><creatorcontrib>Singh, Mallika</creatorcontrib><creatorcontrib>Goldsmith, Mark A.</creatorcontrib><creatorcontrib>Smith, Jacqueline A. M.</creatorcontrib><creatorcontrib>Bivona, Trever G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Robert J.</au><au>Haderk, Franziska</au><au>Stahlhut, Carlos</au><au>Schulze, Christopher J.</au><au>Hemmati, Golzar</au><au>Wildes, David</au><au>Tzitzilonis, Christos</au><au>Mordec, Kasia</au><au>Marquez, Abby</au><au>Romero, Jason</au><au>Hsieh, Tientien</au><au>Zaman, Aubhishek</au><au>Olivas, Victor</au><au>McCoach, Caroline</au><au>Blakely, Collin M.</au><au>Wang, Zhengping</au><au>Kiss, Gert</au><au>Koltun, Elena S.</au><au>Gill, Adrian L.</au><au>Singh, Mallika</au><au>Goldsmith, Mark A.</au><au>Smith, Jacqueline A. M.</au><au>Bivona, Trever G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>20</volume><issue>9</issue><spage>1064</spage><epage>1073</epage><pages>1064-1073</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAF V600E -driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11 ) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRAS G12C ). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS–GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS–GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers. Nichols et al. identify an SHP2 inhibitor that disrupts SOS1-mediated RAS–GTP loading with demonstrated efficacy in various types of tumour driven by mutant BRAF, NF1 or RAS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30104724</pmid><doi>10.1038/s41556-018-0169-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5028-8725</orcidid><orcidid>https://orcid.org/0000-0001-5734-4128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2018-09, Vol.20 (9), p.1064-1073
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115280
source MEDLINE; Nature; SpringerNature Complete Journals
subjects 13/106
13/44
13/95
631/67
631/67/1059/602
631/67/68
631/80/86
Allosteric properties
Analysis
Animals
Antineoplastic Agents - pharmacology
Biomarkers, Tumor - genetics
Biomedical and Life Sciences
Cancer
Cancer Research
Cancer treatment
Cell Biology
Cell Line, Tumor
Cellular signal transduction
Coding
Cycles
Dependence
Developmental Biology
Enzyme Inhibitors - pharmacology
Extracellular Signal-Regulated MAP Kinases - metabolism
Genetic Predisposition to Disease
GTPase-activating protein
Guanosine triphosphatases
Guanosine triphosphate
Guanosine Triphosphate - metabolism
HEK293 Cells
Humans
Inhibitors
K-Ras protein
Life Sciences
MAP kinase
MEK inhibitors
Metabolic pathways
Mice, Inbred BALB C
Mice, Nude
Mitogen-Activated Protein Kinase Kinases - metabolism
Mutation
Neoplasms - drug therapy
Neoplasms - enzymology
Neoplasms - genetics
Neoplasms - pathology
Neurofibromin 1
Neurofibromin 1 - genetics
Nucleotides
Phenotype
Phosphatase
Phosphatases
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism
Proteins
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins p21(ras) - genetics
raf Kinases - metabolism
Raf protein
Signal Transduction
SOS1 Protein - metabolism
Stem Cells
Tumor Burden - drug effects
Tumors
Xenograft Model Antitumor Assays
title RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAS%20nucleotide%20cycling%20underlies%20the%20SHP2%20phosphatase%20dependence%20of%20mutant%20BRAF-,%20NF1-%20and%20RAS-driven%20cancers&rft.jtitle=Nature%20cell%20biology&rft.au=Nichols,%20Robert%20J.&rft.date=2018-09-01&rft.volume=20&rft.issue=9&rft.spage=1064&rft.epage=1073&rft.pages=1064-1073&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-018-0169-1&rft_dat=%3Cgale_pubme%3EA572830657%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095501357&rft_id=info:pmid/30104724&rft_galeid=A572830657&rfr_iscdi=true