Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons

The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-08, Vol.8 (1), p.12980-9, Article 12980
Hauptverfasser: Chakraborty, Indranil, Saha, Gobinda, Sengupta, Abhronil, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 12980
container_title Scientific reports
container_volume 8
creator Chakraborty, Indranil
Saha, Gobinda
Sengupta, Abhronil
Roy, Kaushik
description The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge 2 Sb 2 Te 5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.
doi_str_mv 10.1038/s41598-018-31365-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2096555356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d507a24788cb30af7e6e573bd9984e2a552e0385d08448d8687b81667bd4ddee3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoKuof8CAFL16q-W56EWRxVVh0QT2HtMluq22zJq0f_97UruvqwRySgXnmnZm8ABwieIogEWeeIpaKGCIRE0Q4i983wC6GlMWYYLy5Fu-AA--fYDgMpxSl22CHQMQog8kumDzYN-V0NFa-jW5N51QVjWy96NqymUed7--LqoqnhW1tU-bRtFDeRKNCNXMT3S_K557oC23j98HWTFXeHCzfPfA4vnwYXceTu6ub0cUkzmlC21iHzgrTRIg8I1DNEsMNS0im01RQgxVj2IQVmYaCUqEFF0kmEOdJpqnWxpA9cD7oLrqsNjo3TRvmlgtX1sp9SKtK-TvTlIWc21fJESI44UHgZCng7EtnfCvr0uemqlRjbOclhilnjBHWo8d_0CfbuSas11OUccgFDBQeqNxZ752ZrYZBUPZ-ycEvGfySX37J91B0tL7GquTbnQCQAfAhFf7b_fT-R_YT0j2gkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094560680</pqid></control><display><type>article</type><title>Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chakraborty, Indranil ; Saha, Gobinda ; Sengupta, Abhronil ; Roy, Kaushik</creator><creatorcontrib>Chakraborty, Indranil ; Saha, Gobinda ; Sengupta, Abhronil ; Roy, Kaushik</creatorcontrib><description>The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge 2 Sb 2 Te 5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-31365-x</identifier><identifier>PMID: 30154507</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/925/927/1021 ; Firing pattern ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Science ; Science (multidisciplinary) ; Synapses</subject><ispartof>Scientific reports, 2018-08, Vol.8 (1), p.12980-9, Article 12980</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d507a24788cb30af7e6e573bd9984e2a552e0385d08448d8687b81667bd4ddee3</citedby><cites>FETCH-LOGICAL-c474t-d507a24788cb30af7e6e573bd9984e2a552e0385d08448d8687b81667bd4ddee3</cites><orcidid>0000-0003-4829-3706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113276/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113276/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30154507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Indranil</creatorcontrib><creatorcontrib>Saha, Gobinda</creatorcontrib><creatorcontrib>Sengupta, Abhronil</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><title>Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge 2 Sb 2 Te 5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.</description><subject>639/166/987</subject><subject>639/925/927/1021</subject><subject>Firing pattern</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synapses</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMoKuof8CAFL16q-W56EWRxVVh0QT2HtMluq22zJq0f_97UruvqwRySgXnmnZm8ABwieIogEWeeIpaKGCIRE0Q4i983wC6GlMWYYLy5Fu-AA--fYDgMpxSl22CHQMQog8kumDzYN-V0NFa-jW5N51QVjWy96NqymUed7--LqoqnhW1tU-bRtFDeRKNCNXMT3S_K557oC23j98HWTFXeHCzfPfA4vnwYXceTu6ub0cUkzmlC21iHzgrTRIg8I1DNEsMNS0im01RQgxVj2IQVmYaCUqEFF0kmEOdJpqnWxpA9cD7oLrqsNjo3TRvmlgtX1sp9SKtK-TvTlIWc21fJESI44UHgZCng7EtnfCvr0uemqlRjbOclhilnjBHWo8d_0CfbuSas11OUccgFDBQeqNxZ752ZrYZBUPZ-ycEvGfySX37J91B0tL7GquTbnQCQAfAhFf7b_fT-R_YT0j2gkw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Chakraborty, Indranil</creator><creator>Saha, Gobinda</creator><creator>Sengupta, Abhronil</creator><creator>Roy, Kaushik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4829-3706</orcidid></search><sort><creationdate>20180828</creationdate><title>Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons</title><author>Chakraborty, Indranil ; Saha, Gobinda ; Sengupta, Abhronil ; Roy, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d507a24788cb30af7e6e573bd9984e2a552e0385d08448d8687b81667bd4ddee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/987</topic><topic>639/925/927/1021</topic><topic>Firing pattern</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Indranil</creatorcontrib><creatorcontrib>Saha, Gobinda</creatorcontrib><creatorcontrib>Sengupta, Abhronil</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Indranil</au><au>Saha, Gobinda</au><au>Sengupta, Abhronil</au><au>Roy, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>12980</spage><epage>9</epage><pages>12980-9</pages><artnum>12980</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge 2 Sb 2 Te 5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30154507</pmid><doi>10.1038/s41598-018-31365-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4829-3706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-08, Vol.8 (1), p.12980-9, Article 12980
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113276
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/166/987
639/925/927/1021
Firing pattern
Humanities and Social Sciences
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Synapses
title Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Fast%20Neural%20Computing%20using%20All-Photonic%20Phase%20Change%20Spiking%20Neurons&rft.jtitle=Scientific%20reports&rft.au=Chakraborty,%20Indranil&rft.date=2018-08-28&rft.volume=8&rft.issue=1&rft.spage=12980&rft.epage=9&rft.pages=12980-9&rft.artnum=12980&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-31365-x&rft_dat=%3Cproquest_pubme%3E2096555356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094560680&rft_id=info:pmid/30154507&rfr_iscdi=true