Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT
The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for estimating the size of a lesion accurately, but t...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2018-08, Vol.31 (4), p.505-512 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512 |
---|---|
container_issue | 4 |
container_start_page | 505 |
container_title | Journal of digital imaging |
container_volume | 31 |
creator | Kim, Young Jae Lee, Seung Hyun Lim, Kun Young Kim, Kwang Gi |
description | The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for estimating the size of a lesion accurately, but there are several constraints and limitations to calculating the volume in clinical trials. In this study, we developed a method to detect lesions automatically, with minimal intervention by the user, and calculate their volume. Our proposed method, called a spherical region-growing method (SPRG), uses segmentation that starts from a seed point set by the user. SPRG is a modification of an existing region-growing method that is based on a sphere instead of pixels. The SPRG method detects lesions while preventing leakage to neighboring tissues, because the sphere is grown, i.e., neighboring voxels are added, only when all the voxels meet the required conditions. In this study, two radiologists segmented lung tumors using a manual method and the proposed method, and the results of both methods were compared. The proposed method showed a high sensitivity of 81.68–84.81% and a high dice similarity coefficient (DSC) of 0.86–0.88 compared with the manual method. In addition, the SPRG intraclass correlation coefficient (ICC) was 0.998 (CI 0.997–0.999,
p
|
doi_str_mv | 10.1007/s10278-018-0051-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993521829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-67ab64d6bd740f41100b0aa6806939d4d4d49ea71a21af6ad8ac39503917c5b93</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCILoUfwAVZ4sIl4En8eUFC4avSVhwohZvlOM5uqsRe7KRS_z0OKdtyqKyRNZo3783MQ-glkLdAiHiXgJRCFgRyEAYFe4Q2wHMmSvHrMdoQqUQBUqoT9CylK0JAMEGfopNSVZIAoxv086O7dkM4jM5P2PgWX5qhb83UB49Dh7-73VJZ83M37UOLuxDxdvY7XBtvXcSXYZhHN8UbnDH13qUJ1xfP0ZPODMm9uP1P0Y_Pny7qr8X225ez-sO2sFTJqeDCNJy2vGkFJR2FvFZDjOGScFWpli5POSPAlGA6blppbKUYqRQIyxpVnaL3K-9hbkbX2jxsNIM-xH408UYH0-v_K77f61241hygAkozweuVIKSp18n2k7N7G7x3dtJlKRTjZJF5cysTw-85r6jHPlk3DMa7MCcNSlUE8kmrO8Ij9CrM0ecj_EWxEmS5EMKKsjGkFF13HBmIXszVq7k6m6sXczXLPa_u73rs-OdmBpQrIOWS37l4T_pB1j87866R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993521829</pqid></control><display><type>article</type><title>Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Young Jae ; Lee, Seung Hyun ; Lim, Kun Young ; Kim, Kwang Gi</creator><creatorcontrib>Kim, Young Jae ; Lee, Seung Hyun ; Lim, Kun Young ; Kim, Kwang Gi</creatorcontrib><description>The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for estimating the size of a lesion accurately, but there are several constraints and limitations to calculating the volume in clinical trials. In this study, we developed a method to detect lesions automatically, with minimal intervention by the user, and calculate their volume. Our proposed method, called a spherical region-growing method (SPRG), uses segmentation that starts from a seed point set by the user. SPRG is a modification of an existing region-growing method that is based on a sphere instead of pixels. The SPRG method detects lesions while preventing leakage to neighboring tissues, because the sphere is grown, i.e., neighboring voxels are added, only when all the voxels meet the required conditions. In this study, two radiologists segmented lung tumors using a manual method and the proposed method, and the results of both methods were compared. The proposed method showed a high sensitivity of 81.68–84.81% and a high dice similarity coefficient (DSC) of 0.86–0.88 compared with the manual method. In addition, the SPRG intraclass correlation coefficient (ICC) was 0.998 (CI 0.997–0.999,
p
< 0.01), showing that the SPRG method is highly reliable. If our proposed method is used for segmentation and volumetric measurement of lesions, then objective and accurate results and shorter data analysis time are possible.</description><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 1618-727X</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-018-0051-5</identifier><identifier>PMID: 29380154</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>ANIMAL TISSUES ; CALORIMETRY ; Cancer ; CLINICAL TRIALS ; COMPUTERIZED TOMOGRAPHY ; Correlation coefficient ; Correlation coefficients ; CORRELATIONS ; Criteria ; DATA ANALYSIS ; Data processing ; DIAGNOSIS ; Evaluation ; Imaging ; Lesions ; Lung cancer ; MANUALS ; Mathematical analysis ; Medical diagnosis ; Medical research ; Medicine ; Medicine & Public Health ; NEOPLASMS ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; Segmentation ; SENSITIVITY ; Solid tumors ; SPHERICAL CONFIGURATION ; Tissues ; Tumors</subject><ispartof>Journal of digital imaging, 2018-08, Vol.31 (4), p.505-512</ispartof><rights>Society for Imaging Informatics in Medicine 2018</rights><rights>Journal of Digital Imaging is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-67ab64d6bd740f41100b0aa6806939d4d4d49ea71a21af6ad8ac39503917c5b93</citedby><cites>FETCH-LOGICAL-c498t-67ab64d6bd740f41100b0aa6806939d4d4d49ea71a21af6ad8ac39503917c5b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113144/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113144/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29380154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22795609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young Jae</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Lim, Kun Young</creatorcontrib><creatorcontrib>Kim, Kwang Gi</creatorcontrib><title>Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for estimating the size of a lesion accurately, but there are several constraints and limitations to calculating the volume in clinical trials. In this study, we developed a method to detect lesions automatically, with minimal intervention by the user, and calculate their volume. Our proposed method, called a spherical region-growing method (SPRG), uses segmentation that starts from a seed point set by the user. SPRG is a modification of an existing region-growing method that is based on a sphere instead of pixels. The SPRG method detects lesions while preventing leakage to neighboring tissues, because the sphere is grown, i.e., neighboring voxels are added, only when all the voxels meet the required conditions. In this study, two radiologists segmented lung tumors using a manual method and the proposed method, and the results of both methods were compared. The proposed method showed a high sensitivity of 81.68–84.81% and a high dice similarity coefficient (DSC) of 0.86–0.88 compared with the manual method. In addition, the SPRG intraclass correlation coefficient (ICC) was 0.998 (CI 0.997–0.999,
p
< 0.01), showing that the SPRG method is highly reliable. If our proposed method is used for segmentation and volumetric measurement of lesions, then objective and accurate results and shorter data analysis time are possible.</description><subject>ANIMAL TISSUES</subject><subject>CALORIMETRY</subject><subject>Cancer</subject><subject>CLINICAL TRIALS</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>CORRELATIONS</subject><subject>Criteria</subject><subject>DATA ANALYSIS</subject><subject>Data processing</subject><subject>DIAGNOSIS</subject><subject>Evaluation</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Lung cancer</subject><subject>MANUALS</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>NEOPLASMS</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Segmentation</subject><subject>SENSITIVITY</subject><subject>Solid tumors</subject><subject>SPHERICAL CONFIGURATION</subject><subject>Tissues</subject><subject>Tumors</subject><issn>0897-1889</issn><issn>1618-727X</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UU1v1DAQtRCILoUfwAVZ4sIl4En8eUFC4avSVhwohZvlOM5uqsRe7KRS_z0OKdtyqKyRNZo3783MQ-glkLdAiHiXgJRCFgRyEAYFe4Q2wHMmSvHrMdoQqUQBUqoT9CylK0JAMEGfopNSVZIAoxv086O7dkM4jM5P2PgWX5qhb83UB49Dh7-73VJZ83M37UOLuxDxdvY7XBtvXcSXYZhHN8UbnDH13qUJ1xfP0ZPODMm9uP1P0Y_Pny7qr8X225ez-sO2sFTJqeDCNJy2vGkFJR2FvFZDjOGScFWpli5POSPAlGA6blppbKUYqRQIyxpVnaL3K-9hbkbX2jxsNIM-xH408UYH0-v_K77f61241hygAkozweuVIKSp18n2k7N7G7x3dtJlKRTjZJF5cysTw-85r6jHPlk3DMa7MCcNSlUE8kmrO8Ij9CrM0ecj_EWxEmS5EMKKsjGkFF13HBmIXszVq7k6m6sXczXLPa_u73rs-OdmBpQrIOWS37l4T_pB1j87866R</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Kim, Young Jae</creator><creator>Lee, Seung Hyun</creator><creator>Lim, Kun Young</creator><creator>Kim, Kwang Gi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180801</creationdate><title>Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT</title><author>Kim, Young Jae ; Lee, Seung Hyun ; Lim, Kun Young ; Kim, Kwang Gi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-67ab64d6bd740f41100b0aa6806939d4d4d49ea71a21af6ad8ac39503917c5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANIMAL TISSUES</topic><topic>CALORIMETRY</topic><topic>Cancer</topic><topic>CLINICAL TRIALS</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>CORRELATIONS</topic><topic>Criteria</topic><topic>DATA ANALYSIS</topic><topic>Data processing</topic><topic>DIAGNOSIS</topic><topic>Evaluation</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Lung cancer</topic><topic>MANUALS</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>NEOPLASMS</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Segmentation</topic><topic>SENSITIVITY</topic><topic>Solid tumors</topic><topic>SPHERICAL CONFIGURATION</topic><topic>Tissues</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young Jae</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Lim, Kun Young</creatorcontrib><creatorcontrib>Kim, Kwang Gi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young Jae</au><au>Lee, Seung Hyun</au><au>Lim, Kun Young</au><au>Kim, Kwang Gi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>31</volume><issue>4</issue><spage>505</spage><epage>512</epage><pages>505-512</pages><issn>0897-1889</issn><issn>1618-727X</issn><eissn>1618-727X</eissn><abstract>The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for estimating the size of a lesion accurately, but there are several constraints and limitations to calculating the volume in clinical trials. In this study, we developed a method to detect lesions automatically, with minimal intervention by the user, and calculate their volume. Our proposed method, called a spherical region-growing method (SPRG), uses segmentation that starts from a seed point set by the user. SPRG is a modification of an existing region-growing method that is based on a sphere instead of pixels. The SPRG method detects lesions while preventing leakage to neighboring tissues, because the sphere is grown, i.e., neighboring voxels are added, only when all the voxels meet the required conditions. In this study, two radiologists segmented lung tumors using a manual method and the proposed method, and the results of both methods were compared. The proposed method showed a high sensitivity of 81.68–84.81% and a high dice similarity coefficient (DSC) of 0.86–0.88 compared with the manual method. In addition, the SPRG intraclass correlation coefficient (ICC) was 0.998 (CI 0.997–0.999,
p
< 0.01), showing that the SPRG method is highly reliable. If our proposed method is used for segmentation and volumetric measurement of lesions, then objective and accurate results and shorter data analysis time are possible.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29380154</pmid><doi>10.1007/s10278-018-0051-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2018-08, Vol.31 (4), p.505-512 |
issn | 0897-1889 1618-727X 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113144 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | ANIMAL TISSUES CALORIMETRY Cancer CLINICAL TRIALS COMPUTERIZED TOMOGRAPHY Correlation coefficient Correlation coefficients CORRELATIONS Criteria DATA ANALYSIS Data processing DIAGNOSIS Evaluation Imaging Lesions Lung cancer MANUALS Mathematical analysis Medical diagnosis Medical research Medicine Medicine & Public Health NEOPLASMS Radiology RADIOLOGY AND NUCLEAR MEDICINE Segmentation SENSITIVITY Solid tumors SPHERICAL CONFIGURATION Tissues Tumors |
title | Development and Validation of Segmentation Method for Lung Cancer Volumetry on Chest CT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20Segmentation%20Method%20for%20Lung%20Cancer%20Volumetry%20on%20Chest%20CT&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Kim,%20Young%20Jae&rft.date=2018-08-01&rft.volume=31&rft.issue=4&rft.spage=505&rft.epage=512&rft.pages=505-512&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-018-0051-5&rft_dat=%3Cproquest_pubme%3E1993521829%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993521829&rft_id=info:pmid/29380154&rfr_iscdi=true |