Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin pola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (34), p.8511-8516
Hauptverfasser: Gong, Shi-Jing, Gong, Cheng, Sun, Yu-Yun, Tong, Wen-Yi, Duan, Chun-Gang, Chu, Jun-Hao, Zhang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8516
container_issue 34
container_start_page 8511
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Gong, Shi-Jing
Gong, Cheng
Sun, Yu-Yun
Tong, Wen-Yi
Duan, Chun-Gang
Chu, Jun-Hao
Zhang, Xiang
description Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.
doi_str_mv 10.1073/pnas.1715465115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26530163</jstor_id><sourcerecordid>26530163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYMo9rW6dqUMuHEz7b35mpmNILVVoeBGwV3I5KPNI5N5JjNC_3vzfPX5sQrc-8vhnHsIeYFwjtCxi13S5Rw7FFwKRPGIbBAGbCUf4DHZANCu7TnlJ-S0lC0ADKKHp-SEAXSSUrkh366iM0sORsd434RkV-NsQ983dzr6dnJLnQfT6LQE73KeJ32b3FLqwDZlF1Ljg4u2cd5XmWbJOpVQljmXZ-SJ17G45w_vGfl6ffXl8mN78_nDp8t3N63hnC0tDh3r0bpRoNCcgpNs8JKLGqBDD97IEb3WGkZHuZduZKPtDTO9sd7YXrIz8vagu1vHyVnjUjUR1S6HSed7Neug_t2kcKdu5x9KItIORBV48yCQ5--rK4uaQjEuRp3cvBZFoWcdAqN79PV_6HZec6rxFEXg2FH5y9HFgTJ5LiU7fzSDoPatqX1r6k9r9cervzMc-d81VeDlAdjub3vcUykYoGTsJ9wfns0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104172686</pqid></control><display><type>article</type><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</creator><creatorcontrib>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</creatorcontrib><description>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715465115</identifier><identifier>PMID: 30076226</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antiferromagnetism ; Band structure ; Crystals ; Data processing ; Density functional theory ; Electric fields ; Electrical equipment ; Electron spin ; Electrons ; Energy levels ; Fermi surfaces ; Ferromagnetism ; Field effect transistors ; Heavy metals ; Information processing ; Interlayers ; Iron constituents ; Magnetism ; Metallicity ; Metals ; Physical properties ; Physical Sciences ; Polarization (spin alignment) ; Semiconductor devices ; Spintronics ; Thin films ; Transistors ; Vanadium</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (34), p.8511-8516</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 21, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</citedby><cites>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</cites><orcidid>0000-0002-3272-894X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26530163$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26530163$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30076226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Shi-Jing</creatorcontrib><creatorcontrib>Gong, Cheng</creatorcontrib><creatorcontrib>Sun, Yu-Yun</creatorcontrib><creatorcontrib>Tong, Wen-Yi</creatorcontrib><creatorcontrib>Duan, Chun-Gang</creatorcontrib><creatorcontrib>Chu, Jun-Hao</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</description><subject>Antiferromagnetism</subject><subject>Band structure</subject><subject>Crystals</subject><subject>Data processing</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrical equipment</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy levels</subject><subject>Fermi surfaces</subject><subject>Ferromagnetism</subject><subject>Field effect transistors</subject><subject>Heavy metals</subject><subject>Information processing</subject><subject>Interlayers</subject><subject>Iron constituents</subject><subject>Magnetism</subject><subject>Metallicity</subject><subject>Metals</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Polarization (spin alignment)</subject><subject>Semiconductor devices</subject><subject>Spintronics</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Vanadium</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxYMo9rW6dqUMuHEz7b35mpmNILVVoeBGwV3I5KPNI5N5JjNC_3vzfPX5sQrc-8vhnHsIeYFwjtCxi13S5Rw7FFwKRPGIbBAGbCUf4DHZANCu7TnlJ-S0lC0ADKKHp-SEAXSSUrkh366iM0sORsd434RkV-NsQ983dzr6dnJLnQfT6LQE73KeJ32b3FLqwDZlF1Ljg4u2cd5XmWbJOpVQljmXZ-SJ17G45w_vGfl6ffXl8mN78_nDp8t3N63hnC0tDh3r0bpRoNCcgpNs8JKLGqBDD97IEb3WGkZHuZduZKPtDTO9sd7YXrIz8vagu1vHyVnjUjUR1S6HSed7Neug_t2kcKdu5x9KItIORBV48yCQ5--rK4uaQjEuRp3cvBZFoWcdAqN79PV_6HZec6rxFEXg2FH5y9HFgTJ5LiU7fzSDoPatqX1r6k9r9cervzMc-d81VeDlAdjub3vcUykYoGTsJ9wfns0</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Gong, Shi-Jing</creator><creator>Gong, Cheng</creator><creator>Sun, Yu-Yun</creator><creator>Tong, Wen-Yi</creator><creator>Duan, Chun-Gang</creator><creator>Chu, Jun-Hao</creator><creator>Zhang, Xiang</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3272-894X</orcidid></search><sort><creationdate>20180821</creationdate><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><author>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiferromagnetism</topic><topic>Band structure</topic><topic>Crystals</topic><topic>Data processing</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrical equipment</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy levels</topic><topic>Fermi surfaces</topic><topic>Ferromagnetism</topic><topic>Field effect transistors</topic><topic>Heavy metals</topic><topic>Information processing</topic><topic>Interlayers</topic><topic>Iron constituents</topic><topic>Magnetism</topic><topic>Metallicity</topic><topic>Metals</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Polarization (spin alignment)</topic><topic>Semiconductor devices</topic><topic>Spintronics</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Shi-Jing</creatorcontrib><creatorcontrib>Gong, Cheng</creatorcontrib><creatorcontrib>Sun, Yu-Yun</creatorcontrib><creatorcontrib>Tong, Wen-Yi</creatorcontrib><creatorcontrib>Duan, Chun-Gang</creatorcontrib><creatorcontrib>Chu, Jun-Hao</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Shi-Jing</au><au>Gong, Cheng</au><au>Sun, Yu-Yun</au><au>Tong, Wen-Yi</au><au>Duan, Chun-Gang</au><au>Chu, Jun-Hao</au><au>Zhang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>115</volume><issue>34</issue><spage>8511</spage><epage>8516</epage><pages>8511-8516</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30076226</pmid><doi>10.1073/pnas.1715465115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3272-894X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (34), p.8511-8516
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112705
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antiferromagnetism
Band structure
Crystals
Data processing
Density functional theory
Electric fields
Electrical equipment
Electron spin
Electrons
Energy levels
Fermi surfaces
Ferromagnetism
Field effect transistors
Heavy metals
Information processing
Interlayers
Iron constituents
Magnetism
Metallicity
Metals
Physical properties
Physical Sciences
Polarization (spin alignment)
Semiconductor devices
Spintronics
Thin films
Transistors
Vanadium
title Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20induced%202D%20half-metallic%20antiferromagnets%20and%20spin%20field%20effect%20transistors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gong,%20Shi-Jing&rft.date=2018-08-21&rft.volume=115&rft.issue=34&rft.spage=8511&rft.epage=8516&rft.pages=8511-8516&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715465115&rft_dat=%3Cjstor_pubme%3E26530163%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104172686&rft_id=info:pmid/30076226&rft_jstor_id=26530163&rfr_iscdi=true