Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors
Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin pola...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (34), p.8511-8516 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8516 |
---|---|
container_issue | 34 |
container_start_page | 8511 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Gong, Shi-Jing Gong, Cheng Sun, Yu-Yun Tong, Wen-Yi Duan, Chun-Gang Chu, Jun-Hao Zhang, Xiang |
description | Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage. |
doi_str_mv | 10.1073/pnas.1715465115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26530163</jstor_id><sourcerecordid>26530163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYMo9rW6dqUMuHEz7b35mpmNILVVoeBGwV3I5KPNI5N5JjNC_3vzfPX5sQrc-8vhnHsIeYFwjtCxi13S5Rw7FFwKRPGIbBAGbCUf4DHZANCu7TnlJ-S0lC0ADKKHp-SEAXSSUrkh366iM0sORsd434RkV-NsQ983dzr6dnJLnQfT6LQE73KeJ32b3FLqwDZlF1Ljg4u2cd5XmWbJOpVQljmXZ-SJ17G45w_vGfl6ffXl8mN78_nDp8t3N63hnC0tDh3r0bpRoNCcgpNs8JKLGqBDD97IEb3WGkZHuZduZKPtDTO9sd7YXrIz8vagu1vHyVnjUjUR1S6HSed7Neug_t2kcKdu5x9KItIORBV48yCQ5--rK4uaQjEuRp3cvBZFoWcdAqN79PV_6HZec6rxFEXg2FH5y9HFgTJ5LiU7fzSDoPatqX1r6k9r9cervzMc-d81VeDlAdjub3vcUykYoGTsJ9wfns0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104172686</pqid></control><display><type>article</type><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</creator><creatorcontrib>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</creatorcontrib><description>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715465115</identifier><identifier>PMID: 30076226</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antiferromagnetism ; Band structure ; Crystals ; Data processing ; Density functional theory ; Electric fields ; Electrical equipment ; Electron spin ; Electrons ; Energy levels ; Fermi surfaces ; Ferromagnetism ; Field effect transistors ; Heavy metals ; Information processing ; Interlayers ; Iron constituents ; Magnetism ; Metallicity ; Metals ; Physical properties ; Physical Sciences ; Polarization (spin alignment) ; Semiconductor devices ; Spintronics ; Thin films ; Transistors ; Vanadium</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (34), p.8511-8516</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 21, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</citedby><cites>FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</cites><orcidid>0000-0002-3272-894X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26530163$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26530163$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30076226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Shi-Jing</creatorcontrib><creatorcontrib>Gong, Cheng</creatorcontrib><creatorcontrib>Sun, Yu-Yun</creatorcontrib><creatorcontrib>Tong, Wen-Yi</creatorcontrib><creatorcontrib>Duan, Chun-Gang</creatorcontrib><creatorcontrib>Chu, Jun-Hao</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</description><subject>Antiferromagnetism</subject><subject>Band structure</subject><subject>Crystals</subject><subject>Data processing</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrical equipment</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy levels</subject><subject>Fermi surfaces</subject><subject>Ferromagnetism</subject><subject>Field effect transistors</subject><subject>Heavy metals</subject><subject>Information processing</subject><subject>Interlayers</subject><subject>Iron constituents</subject><subject>Magnetism</subject><subject>Metallicity</subject><subject>Metals</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Polarization (spin alignment)</subject><subject>Semiconductor devices</subject><subject>Spintronics</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Vanadium</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxYMo9rW6dqUMuHEz7b35mpmNILVVoeBGwV3I5KPNI5N5JjNC_3vzfPX5sQrc-8vhnHsIeYFwjtCxi13S5Rw7FFwKRPGIbBAGbCUf4DHZANCu7TnlJ-S0lC0ADKKHp-SEAXSSUrkh366iM0sORsd434RkV-NsQ983dzr6dnJLnQfT6LQE73KeJ32b3FLqwDZlF1Ljg4u2cd5XmWbJOpVQljmXZ-SJ17G45w_vGfl6ffXl8mN78_nDp8t3N63hnC0tDh3r0bpRoNCcgpNs8JKLGqBDD97IEb3WGkZHuZduZKPtDTO9sd7YXrIz8vagu1vHyVnjUjUR1S6HSed7Neug_t2kcKdu5x9KItIORBV48yCQ5--rK4uaQjEuRp3cvBZFoWcdAqN79PV_6HZec6rxFEXg2FH5y9HFgTJ5LiU7fzSDoPatqX1r6k9r9cervzMc-d81VeDlAdjub3vcUykYoGTsJ9wfns0</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Gong, Shi-Jing</creator><creator>Gong, Cheng</creator><creator>Sun, Yu-Yun</creator><creator>Tong, Wen-Yi</creator><creator>Duan, Chun-Gang</creator><creator>Chu, Jun-Hao</creator><creator>Zhang, Xiang</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3272-894X</orcidid></search><sort><creationdate>20180821</creationdate><title>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</title><author>Gong, Shi-Jing ; Gong, Cheng ; Sun, Yu-Yun ; Tong, Wen-Yi ; Duan, Chun-Gang ; Chu, Jun-Hao ; Zhang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-197381deb515a420e639f64549071f0fc6b1faaa0be24f6eb3bd8c3c8cdfcd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiferromagnetism</topic><topic>Band structure</topic><topic>Crystals</topic><topic>Data processing</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrical equipment</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy levels</topic><topic>Fermi surfaces</topic><topic>Ferromagnetism</topic><topic>Field effect transistors</topic><topic>Heavy metals</topic><topic>Information processing</topic><topic>Interlayers</topic><topic>Iron constituents</topic><topic>Magnetism</topic><topic>Metallicity</topic><topic>Metals</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Polarization (spin alignment)</topic><topic>Semiconductor devices</topic><topic>Spintronics</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Shi-Jing</creatorcontrib><creatorcontrib>Gong, Cheng</creatorcontrib><creatorcontrib>Sun, Yu-Yun</creatorcontrib><creatorcontrib>Tong, Wen-Yi</creatorcontrib><creatorcontrib>Duan, Chun-Gang</creatorcontrib><creatorcontrib>Chu, Jun-Hao</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Shi-Jing</au><au>Gong, Cheng</au><au>Sun, Yu-Yun</au><au>Tong, Wen-Yi</au><au>Duan, Chun-Gang</au><au>Chu, Jun-Hao</au><au>Zhang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>115</volume><issue>34</issue><spage>8511</spage><epage>8516</epage><pages>8511-8516</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30076226</pmid><doi>10.1073/pnas.1715465115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3272-894X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (34), p.8511-8516 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112705 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Antiferromagnetism Band structure Crystals Data processing Density functional theory Electric fields Electrical equipment Electron spin Electrons Energy levels Fermi surfaces Ferromagnetism Field effect transistors Heavy metals Information processing Interlayers Iron constituents Magnetism Metallicity Metals Physical properties Physical Sciences Polarization (spin alignment) Semiconductor devices Spintronics Thin films Transistors Vanadium |
title | Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20induced%202D%20half-metallic%20antiferromagnets%20and%20spin%20field%20effect%20transistors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gong,%20Shi-Jing&rft.date=2018-08-21&rft.volume=115&rft.issue=34&rft.spage=8511&rft.epage=8516&rft.pages=8511-8516&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715465115&rft_dat=%3Cjstor_pubme%3E26530163%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104172686&rft_id=info:pmid/30076226&rft_jstor_id=26530163&rfr_iscdi=true |