Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound

The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2018-09, Vol.22 (9), p.4171-4182
Hauptverfasser: Li, Yingjia, Wu, Manxiang, Zhang, Nisi, Tang, Caiyun, Jiang, Peng, Liu, Xin, Yan, Fei, Zheng, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4182
container_issue 9
container_start_page 4171
container_title Journal of cellular and molecular medicine
container_volume 22
creator Li, Yingjia
Wu, Manxiang
Zhang, Nisi
Tang, Caiyun
Jiang, Peng
Liu, Xin
Yan, Fei
Zheng, Hairong
description The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.
doi_str_mv 10.1111/jcmm.13695
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6111803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094358899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4485-d045c34bca93a9ea72b035c6564b8bafd1ad16ebcd2b7a28b633e6d32aa5b30b3</originalsourceid><addsrcrecordid>eNp9kU9vFCEYxonR2D968QOYSXoz2QrDDIVLk2ajrWY3etAzefkzLRsGpjCjzs2DH6CfsZ9E1l2bepEL8D4_Hl54EHpF8Ckp4-1G9_0poUy0T9AhaXm9aARtnu7XhFN-gI5y3mBMGaHiOTqohWhZw_Ah-rW2-gaCy32uYlfZUDbamgrC6K69iz1UtuucBj1v9SH6OcekYLQVx_c_7_poXOfKgQG0dyP8sL5UfQRTap9XlxdVgBAHSKPT3uZKzVUX9ZSLOvkxQY5TMC_Qsw58ti_38zH6-v7dl-XVYvXp8sPyYrXQTcPbhcFNq2mjNAgKwsJZrTBtNStPUVxBZwgYwqzSplZnUHPFKLXM0BqgVRQreozOd77DpHprtA2lAy-H5HpIs4zg5L9KcDfyOn6TrHwzx7QYnOwNUrydbB7lJk4plJ5ljUVDW86FKNSbHaVTzDnZ7uEGguU2MblNTP5JrMCvH_f0gP6NqABkB3x33s7_sZIfl-v1zvQ35BSncw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094358899</pqid></control><display><type>article</type><title>Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Li, Yingjia ; Wu, Manxiang ; Zhang, Nisi ; Tang, Caiyun ; Jiang, Peng ; Liu, Xin ; Yan, Fei ; Zheng, Hairong</creator><creatorcontrib>Li, Yingjia ; Wu, Manxiang ; Zhang, Nisi ; Tang, Caiyun ; Jiang, Peng ; Liu, Xin ; Yan, Fei ; Zheng, Hairong</creatorcontrib><description>The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.13695</identifier><identifier>PMID: 29956460</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Animals ; Antineoplastic Agents, Phytogenic - pharmacokinetics ; Antineoplastic Agents, Phytogenic - pharmacology ; Apolipoprotein E ; Apolipoproteins E - genetics ; Apolipoproteins E - metabolism ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - antagonists &amp; inhibitors ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Blood-brain barrier ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain ; Brain Neoplasms - metabolism ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Brain Neoplasms - therapy ; Disease Models, Animal ; Drug Compounding - methods ; Drug delivery ; Drug Delivery Systems - methods ; Drug Liberation ; Extracorporeal Shockwave Therapy - methods ; Female ; focused ultrasound ; Gene Expression ; Glioblastoma - metabolism ; Glioblastoma - mortality ; Glioblastoma - pathology ; Glioblastoma - therapy ; Glioma ; Glioma cells ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Original ; Paclitaxel ; Paclitaxel - pharmacokinetics ; Paclitaxel - pharmacology ; Polylactide-co-glycolide ; Polyoxyethylene sorbitan monooleate ; polysorbate 80 ; Polysorbates - chemistry ; Survival Analysis ; Tight Junctions - drug effects ; Tight Junctions - metabolism ; Tight Junctions - pathology ; Toxicity ; Tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Journal of cellular and molecular medicine, 2018-09, Vol.22 (9), p.4171-4182</ispartof><rights>2018 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4485-d045c34bca93a9ea72b035c6564b8bafd1ad16ebcd2b7a28b633e6d32aa5b30b3</citedby><cites>FETCH-LOGICAL-c4485-d045c34bca93a9ea72b035c6564b8bafd1ad16ebcd2b7a28b633e6d32aa5b30b3</cites><orcidid>0000-0003-4874-9582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29956460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yingjia</creatorcontrib><creatorcontrib>Wu, Manxiang</creatorcontrib><creatorcontrib>Zhang, Nisi</creatorcontrib><creatorcontrib>Tang, Caiyun</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yan, Fei</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><title>Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - pharmacokinetics</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins E - genetics</subject><subject>Apolipoproteins E - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - antagonists &amp; inhibitors</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - therapy</subject><subject>Disease Models, Animal</subject><subject>Drug Compounding - methods</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug Liberation</subject><subject>Extracorporeal Shockwave Therapy - methods</subject><subject>Female</subject><subject>focused ultrasound</subject><subject>Gene Expression</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - mortality</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - therapy</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Original</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - pharmacology</subject><subject>Polylactide-co-glycolide</subject><subject>Polyoxyethylene sorbitan monooleate</subject><subject>polysorbate 80</subject><subject>Polysorbates - chemistry</subject><subject>Survival Analysis</subject><subject>Tight Junctions - drug effects</subject><subject>Tight Junctions - metabolism</subject><subject>Tight Junctions - pathology</subject><subject>Toxicity</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9vFCEYxonR2D968QOYSXoz2QrDDIVLk2ajrWY3etAzefkzLRsGpjCjzs2DH6CfsZ9E1l2bepEL8D4_Hl54EHpF8Ckp4-1G9_0poUy0T9AhaXm9aARtnu7XhFN-gI5y3mBMGaHiOTqohWhZw_Ah-rW2-gaCy32uYlfZUDbamgrC6K69iz1UtuucBj1v9SH6OcekYLQVx_c_7_poXOfKgQG0dyP8sL5UfQRTap9XlxdVgBAHSKPT3uZKzVUX9ZSLOvkxQY5TMC_Qsw58ti_38zH6-v7dl-XVYvXp8sPyYrXQTcPbhcFNq2mjNAgKwsJZrTBtNStPUVxBZwgYwqzSplZnUHPFKLXM0BqgVRQreozOd77DpHprtA2lAy-H5HpIs4zg5L9KcDfyOn6TrHwzx7QYnOwNUrydbB7lJk4plJ5ljUVDW86FKNSbHaVTzDnZ7uEGguU2MblNTP5JrMCvH_f0gP6NqABkB3x33s7_sZIfl-v1zvQ35BSncw</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Li, Yingjia</creator><creator>Wu, Manxiang</creator><creator>Zhang, Nisi</creator><creator>Tang, Caiyun</creator><creator>Jiang, Peng</creator><creator>Liu, Xin</creator><creator>Yan, Fei</creator><creator>Zheng, Hairong</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4874-9582</orcidid></search><sort><creationdate>201809</creationdate><title>Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound</title><author>Li, Yingjia ; Wu, Manxiang ; Zhang, Nisi ; Tang, Caiyun ; Jiang, Peng ; Liu, Xin ; Yan, Fei ; Zheng, Hairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4485-d045c34bca93a9ea72b035c6564b8bafd1ad16ebcd2b7a28b633e6d32aa5b30b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - pharmacokinetics</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins E - genetics</topic><topic>Apolipoproteins E - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - antagonists &amp; inhibitors</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - therapy</topic><topic>Disease Models, Animal</topic><topic>Drug Compounding - methods</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug Liberation</topic><topic>Extracorporeal Shockwave Therapy - methods</topic><topic>Female</topic><topic>focused ultrasound</topic><topic>Gene Expression</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - mortality</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - therapy</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Original</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - pharmacology</topic><topic>Polylactide-co-glycolide</topic><topic>Polyoxyethylene sorbitan monooleate</topic><topic>polysorbate 80</topic><topic>Polysorbates - chemistry</topic><topic>Survival Analysis</topic><topic>Tight Junctions - drug effects</topic><topic>Tight Junctions - metabolism</topic><topic>Tight Junctions - pathology</topic><topic>Toxicity</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yingjia</creatorcontrib><creatorcontrib>Wu, Manxiang</creatorcontrib><creatorcontrib>Zhang, Nisi</creatorcontrib><creatorcontrib>Tang, Caiyun</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yan, Fei</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yingjia</au><au>Wu, Manxiang</au><au>Zhang, Nisi</au><au>Tang, Caiyun</au><au>Jiang, Peng</au><au>Liu, Xin</au><au>Yan, Fei</au><au>Zheng, Hairong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2018-09</date><risdate>2018</risdate><volume>22</volume><issue>9</issue><spage>4171</spage><epage>4182</epage><pages>4171-4182</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29956460</pmid><doi>10.1111/jcmm.13695</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4874-9582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2018-09, Vol.22 (9), p.4171-4182
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6111803
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Animal models
Animals
Antineoplastic Agents, Phytogenic - pharmacokinetics
Antineoplastic Agents, Phytogenic - pharmacology
Apolipoprotein E
Apolipoproteins E - genetics
Apolipoproteins E - metabolism
ATP Binding Cassette Transporter, Subfamily B, Member 1 - antagonists & inhibitors
ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
Blood-brain barrier
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain
Brain Neoplasms - metabolism
Brain Neoplasms - mortality
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Disease Models, Animal
Drug Compounding - methods
Drug delivery
Drug Delivery Systems - methods
Drug Liberation
Extracorporeal Shockwave Therapy - methods
Female
focused ultrasound
Gene Expression
Glioblastoma - metabolism
Glioblastoma - mortality
Glioblastoma - pathology
Glioblastoma - therapy
Glioma
Glioma cells
Humans
Mice
Mice, Inbred BALB C
Mice, Nude
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanoparticles - metabolism
Original
Paclitaxel
Paclitaxel - pharmacokinetics
Paclitaxel - pharmacology
Polylactide-co-glycolide
Polyoxyethylene sorbitan monooleate
polysorbate 80
Polysorbates - chemistry
Survival Analysis
Tight Junctions - drug effects
Tight Junctions - metabolism
Tight Junctions - pathology
Toxicity
Tumors
Ultrasonic imaging
Ultrasound
title Mechanisms of enhanced antiglioma efficacy of polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles by focused ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20enhanced%20antiglioma%20efficacy%20of%20polysorbate%2080%E2%80%90modified%20paclitaxel%E2%80%90loaded%20PLGA%20nanoparticles%20by%20focused%20ultrasound&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Li,%20Yingjia&rft.date=2018-09&rft.volume=22&rft.issue=9&rft.spage=4171&rft.epage=4182&rft.pages=4171-4182&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.13695&rft_dat=%3Cproquest_pubme%3E2094358899%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094358899&rft_id=info:pmid/29956460&rfr_iscdi=true