Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations
The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affi...
Gespeichert in:
Veröffentlicht in: | Communications biology 2018-06, Vol.1 (1), p.70-70, Article 70 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | Communications biology |
container_volume | 1 |
creator | Hauser, Kevin Negron, Christopher Albanese, Steven K. Ray, Soumya Steinbrecher, Thomas Abel, Robert Chodera, John D. Wang, Lingle |
description | The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of
1
.
1
0.9
1.3
kcal mol
−1
(95% confidence interval) and correctly classifying mutations as resistant or susceptible with
8
8
82
93
% accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications.
Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia. |
doi_str_mv | 10.1038/s42003-018-0075-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097594382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</originalsourceid><addsrcrecordid>eNp1kUtvFiEUhonR2KbtD3BjSNy4GeUyNzYmTdOqSRO70DXhcmY-KgMVGG3_vXxOrdXEFZDznAcOL0IvKHlDCR_f5pYRwhtCx4aQoWtun6BDxoVoeN-yp4_2B-gk52tCCBVC9Lx9jg44oZ1oSXeIflwlsM4UF2acILtcVDCA44SNd8EZ5fGp9nhZiyouhoxLxEWlGQpY_NUFlQG7sHPalZgyXvNepLzZwfKreUoADQRI8x2uZ7P6zXOMnk3KZzi5X4_Ql4vzz2cfmstP7z-enV42puN9aTS1loseRKeNZbbXzHDRAtN6MEwMraaDIXzQHeETWNuxQXVUs5GIdrTGan6E3m3em1UvYA2EkpSXN8ktKt3JqJz8uxLcTs7xu-wpJZT3VfD6XpDitxVykYvLBrxXAeKaJSNiqH_JR1bRV_-g13FNoY4nGR9FL0TLeKXoRpkUc04wPTyGErlPVm7Jypqs3Ccrb2vPy8dTPHT8zrECbANyLYUZ0p-r_2_9CfGLslI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389699423</pqid></control><display><type>article</type><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</creator><creatorcontrib>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</creatorcontrib><description>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of
1
.
1
0.9
1.3
kcal mol
−1
(95% confidence interval) and correctly classifying mutations as resistant or susceptible with
8
8
82
93
% accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications.
Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-018-0075-x</identifier><identifier>PMID: 30159405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/2413 ; 692/4028 ; Accuracy ; Affinity ; Biology ; Biomedical and Life Sciences ; Chronic myeloid leukemia ; Enzyme inhibitors ; Free energy ; Kinases ; Leukemia ; Life Sciences ; Missense mutation ; Mutation ; Myeloid leukemia ; Therapeutic applications</subject><ispartof>Communications biology, 2018-06, Vol.1 (1), p.70-70, Article 70</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</citedby><cites>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</cites><orcidid>0000-0003-0542-119X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30159405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Negron, Christopher</creatorcontrib><creatorcontrib>Albanese, Steven K.</creatorcontrib><creatorcontrib>Ray, Soumya</creatorcontrib><creatorcontrib>Steinbrecher, Thomas</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Chodera, John D.</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of
1
.
1
0.9
1.3
kcal mol
−1
(95% confidence interval) and correctly classifying mutations as resistant or susceptible with
8
8
82
93
% accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications.
Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</description><subject>631/114</subject><subject>631/114/2413</subject><subject>692/4028</subject><subject>Accuracy</subject><subject>Affinity</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Chronic myeloid leukemia</subject><subject>Enzyme inhibitors</subject><subject>Free energy</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Missense mutation</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Therapeutic applications</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtvFiEUhonR2KbtD3BjSNy4GeUyNzYmTdOqSRO70DXhcmY-KgMVGG3_vXxOrdXEFZDznAcOL0IvKHlDCR_f5pYRwhtCx4aQoWtun6BDxoVoeN-yp4_2B-gk52tCCBVC9Lx9jg44oZ1oSXeIflwlsM4UF2acILtcVDCA44SNd8EZ5fGp9nhZiyouhoxLxEWlGQpY_NUFlQG7sHPalZgyXvNepLzZwfKreUoADQRI8x2uZ7P6zXOMnk3KZzi5X4_Ql4vzz2cfmstP7z-enV42puN9aTS1loseRKeNZbbXzHDRAtN6MEwMraaDIXzQHeETWNuxQXVUs5GIdrTGan6E3m3em1UvYA2EkpSXN8ktKt3JqJz8uxLcTs7xu-wpJZT3VfD6XpDitxVykYvLBrxXAeKaJSNiqH_JR1bRV_-g13FNoY4nGR9FL0TLeKXoRpkUc04wPTyGErlPVm7Jypqs3Ccrb2vPy8dTPHT8zrECbANyLYUZ0p-r_2_9CfGLslI</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Hauser, Kevin</creator><creator>Negron, Christopher</creator><creator>Albanese, Steven K.</creator><creator>Ray, Soumya</creator><creator>Steinbrecher, Thomas</creator><creator>Abel, Robert</creator><creator>Chodera, John D.</creator><creator>Wang, Lingle</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid></search><sort><creationdate>20180613</creationdate><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><author>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114</topic><topic>631/114/2413</topic><topic>692/4028</topic><topic>Accuracy</topic><topic>Affinity</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Chronic myeloid leukemia</topic><topic>Enzyme inhibitors</topic><topic>Free energy</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Missense mutation</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Negron, Christopher</creatorcontrib><creatorcontrib>Albanese, Steven K.</creatorcontrib><creatorcontrib>Ray, Soumya</creatorcontrib><creatorcontrib>Steinbrecher, Thomas</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Chodera, John D.</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Kevin</au><au>Negron, Christopher</au><au>Albanese, Steven K.</au><au>Ray, Soumya</au><au>Steinbrecher, Thomas</au><au>Abel, Robert</au><au>Chodera, John D.</au><au>Wang, Lingle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><spage>70</spage><epage>70</epage><pages>70-70</pages><artnum>70</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of
1
.
1
0.9
1.3
kcal mol
−1
(95% confidence interval) and correctly classifying mutations as resistant or susceptible with
8
8
82
93
% accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications.
Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30159405</pmid><doi>10.1038/s42003-018-0075-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2018-06, Vol.1 (1), p.70-70, Article 70 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110136 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | 631/114 631/114/2413 692/4028 Accuracy Affinity Biology Biomedical and Life Sciences Chronic myeloid leukemia Enzyme inhibitors Free energy Kinases Leukemia Life Sciences Missense mutation Mutation Myeloid leukemia Therapeutic applications |
title | Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20resistance%20of%20clinical%20Abl%20mutations%20to%20targeted%20kinase%20inhibitors%20using%20alchemical%20free-energy%20calculations&rft.jtitle=Communications%20biology&rft.au=Hauser,%20Kevin&rft.date=2018-06-13&rft.volume=1&rft.issue=1&rft.spage=70&rft.epage=70&rft.pages=70-70&rft.artnum=70&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-018-0075-x&rft_dat=%3Cproquest_pubme%3E2097594382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389699423&rft_id=info:pmid/30159405&rfr_iscdi=true |