Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations

The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2018-06, Vol.1 (1), p.70-70, Article 70
Hauptverfasser: Hauser, Kevin, Negron, Christopher, Albanese, Steven K., Ray, Soumya, Steinbrecher, Thomas, Abel, Robert, Chodera, John D., Wang, Lingle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 70
container_title Communications biology
container_volume 1
creator Hauser, Kevin
Negron, Christopher
Albanese, Steven K.
Ray, Soumya
Steinbrecher, Thomas
Abel, Robert
Chodera, John D.
Wang, Lingle
description The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of 1 . 1 0.9 1.3 kcal mol −1 (95% confidence interval) and correctly classifying mutations as resistant or susceptible with 8 8 82 93 % accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications. Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.
doi_str_mv 10.1038/s42003-018-0075-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097594382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</originalsourceid><addsrcrecordid>eNp1kUtvFiEUhonR2KbtD3BjSNy4GeUyNzYmTdOqSRO70DXhcmY-KgMVGG3_vXxOrdXEFZDznAcOL0IvKHlDCR_f5pYRwhtCx4aQoWtun6BDxoVoeN-yp4_2B-gk52tCCBVC9Lx9jg44oZ1oSXeIflwlsM4UF2acILtcVDCA44SNd8EZ5fGp9nhZiyouhoxLxEWlGQpY_NUFlQG7sHPalZgyXvNepLzZwfKreUoADQRI8x2uZ7P6zXOMnk3KZzi5X4_Ql4vzz2cfmstP7z-enV42puN9aTS1loseRKeNZbbXzHDRAtN6MEwMraaDIXzQHeETWNuxQXVUs5GIdrTGan6E3m3em1UvYA2EkpSXN8ktKt3JqJz8uxLcTs7xu-wpJZT3VfD6XpDitxVykYvLBrxXAeKaJSNiqH_JR1bRV_-g13FNoY4nGR9FL0TLeKXoRpkUc04wPTyGErlPVm7Jypqs3Ccrb2vPy8dTPHT8zrECbANyLYUZ0p-r_2_9CfGLslI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389699423</pqid></control><display><type>article</type><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</creator><creatorcontrib>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</creatorcontrib><description>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of 1 . 1 0.9 1.3 kcal mol −1 (95% confidence interval) and correctly classifying mutations as resistant or susceptible with 8 8 82 93 % accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications. Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-018-0075-x</identifier><identifier>PMID: 30159405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/2413 ; 692/4028 ; Accuracy ; Affinity ; Biology ; Biomedical and Life Sciences ; Chronic myeloid leukemia ; Enzyme inhibitors ; Free energy ; Kinases ; Leukemia ; Life Sciences ; Missense mutation ; Mutation ; Myeloid leukemia ; Therapeutic applications</subject><ispartof>Communications biology, 2018-06, Vol.1 (1), p.70-70, Article 70</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</citedby><cites>FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</cites><orcidid>0000-0003-0542-119X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30159405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Negron, Christopher</creatorcontrib><creatorcontrib>Albanese, Steven K.</creatorcontrib><creatorcontrib>Ray, Soumya</creatorcontrib><creatorcontrib>Steinbrecher, Thomas</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Chodera, John D.</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of 1 . 1 0.9 1.3 kcal mol −1 (95% confidence interval) and correctly classifying mutations as resistant or susceptible with 8 8 82 93 % accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications. Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</description><subject>631/114</subject><subject>631/114/2413</subject><subject>692/4028</subject><subject>Accuracy</subject><subject>Affinity</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Chronic myeloid leukemia</subject><subject>Enzyme inhibitors</subject><subject>Free energy</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Missense mutation</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Therapeutic applications</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtvFiEUhonR2KbtD3BjSNy4GeUyNzYmTdOqSRO70DXhcmY-KgMVGG3_vXxOrdXEFZDznAcOL0IvKHlDCR_f5pYRwhtCx4aQoWtun6BDxoVoeN-yp4_2B-gk52tCCBVC9Lx9jg44oZ1oSXeIflwlsM4UF2acILtcVDCA44SNd8EZ5fGp9nhZiyouhoxLxEWlGQpY_NUFlQG7sHPalZgyXvNepLzZwfKreUoADQRI8x2uZ7P6zXOMnk3KZzi5X4_Ql4vzz2cfmstP7z-enV42puN9aTS1loseRKeNZbbXzHDRAtN6MEwMraaDIXzQHeETWNuxQXVUs5GIdrTGan6E3m3em1UvYA2EkpSXN8ktKt3JqJz8uxLcTs7xu-wpJZT3VfD6XpDitxVykYvLBrxXAeKaJSNiqH_JR1bRV_-g13FNoY4nGR9FL0TLeKXoRpkUc04wPTyGErlPVm7Jypqs3Ccrb2vPy8dTPHT8zrECbANyLYUZ0p-r_2_9CfGLslI</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Hauser, Kevin</creator><creator>Negron, Christopher</creator><creator>Albanese, Steven K.</creator><creator>Ray, Soumya</creator><creator>Steinbrecher, Thomas</creator><creator>Abel, Robert</creator><creator>Chodera, John D.</creator><creator>Wang, Lingle</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid></search><sort><creationdate>20180613</creationdate><title>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</title><author>Hauser, Kevin ; Negron, Christopher ; Albanese, Steven K. ; Ray, Soumya ; Steinbrecher, Thomas ; Abel, Robert ; Chodera, John D. ; Wang, Lingle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b1dd396e95bcd2d6b2c394e2bb7c2974b17c037b503fedd527a51b280948dcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114</topic><topic>631/114/2413</topic><topic>692/4028</topic><topic>Accuracy</topic><topic>Affinity</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Chronic myeloid leukemia</topic><topic>Enzyme inhibitors</topic><topic>Free energy</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Missense mutation</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Negron, Christopher</creatorcontrib><creatorcontrib>Albanese, Steven K.</creatorcontrib><creatorcontrib>Ray, Soumya</creatorcontrib><creatorcontrib>Steinbrecher, Thomas</creatorcontrib><creatorcontrib>Abel, Robert</creatorcontrib><creatorcontrib>Chodera, John D.</creatorcontrib><creatorcontrib>Wang, Lingle</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Kevin</au><au>Negron, Christopher</au><au>Albanese, Steven K.</au><au>Ray, Soumya</au><au>Steinbrecher, Thomas</au><au>Abel, Robert</au><au>Chodera, John D.</au><au>Wang, Lingle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><spage>70</spage><epage>70</epage><pages>70-70</pages><artnum>70</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). These calculations have useful accuracy in predicting resistance for eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a root mean square error in binding free-energy changes of 1 . 1 0.9 1.3 kcal mol −1 (95% confidence interval) and correctly classifying mutations as resistant or susceptible with 8 8 82 93 % accuracy. This benchmark establishes the potential for physical modeling to collaboratively support the assessment and anticipation of patient mutations to affect drug potency in clinical applications. Kevin Hauser et al. accurately predict the impact of mutations in a kinase on the binding affinities of targeted kinase inhibitors using alchemical free-energy calculations. With 88% accuracy, resistance or sensitivity to therapy is computed for 144 clinically-identified point mutations in this major target in chronic myelogenous leukemia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30159405</pmid><doi>10.1038/s42003-018-0075-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2018-06, Vol.1 (1), p.70-70, Article 70
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110136
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects 631/114
631/114/2413
692/4028
Accuracy
Affinity
Biology
Biomedical and Life Sciences
Chronic myeloid leukemia
Enzyme inhibitors
Free energy
Kinases
Leukemia
Life Sciences
Missense mutation
Mutation
Myeloid leukemia
Therapeutic applications
title Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20resistance%20of%20clinical%20Abl%20mutations%20to%20targeted%20kinase%20inhibitors%20using%20alchemical%20free-energy%20calculations&rft.jtitle=Communications%20biology&rft.au=Hauser,%20Kevin&rft.date=2018-06-13&rft.volume=1&rft.issue=1&rft.spage=70&rft.epage=70&rft.pages=70-70&rft.artnum=70&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-018-0075-x&rft_dat=%3Cproquest_pubme%3E2097594382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389699423&rft_id=info:pmid/30159405&rfr_iscdi=true