Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow

This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2017-01, Vol.98 (1), p.155-176
Hauptverfasser: Lee, Chin Yik, Cant, Stewart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 155
container_title Flow, turbulence and combustion
container_volume 98
creator Lee, Chin Yik
Cant, Stewart
description This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.
doi_str_mv 10.1007/s10494-016-9751-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6109950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880818860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ccb07cdecc3881c9f8e696ad2b3b7bf835e94e3b0fa1bdd9945cef7db46a710d3</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS0EoqXwA9ggS2zYGK4znrG9QUqqvqQgFoW15fEjdTVjF3smNP8eR2mrgsTGtnS_e67PPQi9p_CZAvAvhQKTjADtiOQtJewFOqYtbwiVgr-s70Z0pKOCHaE3pdwCQMdBvkZHDVDOWsaP0f2yFFfK6OKEk8frs2t8PfebHCwpRg8Of0vWDQXraPFV3LoyhY2eQop7-nJnc7K7qMdg8Mrd6G1Ic8Y-5crj5X0ou3F0Uw5VCa-G2Xu8qjw-H9Lvt-iV10Nx7x7uE_Tz_OzH6SVZf7-4Ol2uiWEcJmJMD9xYZ0wjBDXSC9fJTttF3_S896JpnWSu6cFr2lsrJWuN89z2rNOcgm1O0NeD7t3cj86aajTrQd3lMOq8U0kH9Xclhhu1SVvVUZCyhSrw6UEgp19zXYAaQzFuGHR0aS5qUTFoJFBR0Y__oLd1H7HaU1QIEPXo9oL0QJmcSsnOP32Ggtrnqg65qpqr2ueqWO358NzFU8djkBVYHIBSS3Hj8rPR_1X9A1QcsNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880818860</pqid></control><display><type>article</type><title>Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow</title><source>Springer Online Journals Complete</source><creator>Lee, Chin Yik ; Cant, Stewart</creator><creatorcontrib>Lee, Chin Yik ; Cant, Stewart</creatorcontrib><description>This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-016-9751-4</identifier><identifier>PMID: 30174547</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Dissipation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Experiments ; Finite element method ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Kinetic energy ; Mathematical models ; Mechanical properties ; Numerical prediction ; Qualitative analysis ; Radial velocity ; Scale models ; Shedding ; Stability ; Subgrid scale models ; Turbulence models ; Turbulent flow ; Velocity ; Vortex shedding</subject><ispartof>Flow, turbulence and combustion, 2017-01, Vol.98 (1), p.155-176</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ccb07cdecc3881c9f8e696ad2b3b7bf835e94e3b0fa1bdd9945cef7db46a710d3</citedby><cites>FETCH-LOGICAL-c470t-ccb07cdecc3881c9f8e696ad2b3b7bf835e94e3b0fa1bdd9945cef7db46a710d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-016-9751-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-016-9751-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30174547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chin Yik</creatorcontrib><creatorcontrib>Cant, Stewart</creatorcontrib><title>Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><addtitle>Flow Turbul Combust</addtitle><description>This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Dissipation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical prediction</subject><subject>Qualitative analysis</subject><subject>Radial velocity</subject><subject>Scale models</subject><subject>Shedding</subject><subject>Stability</subject><subject>Subgrid scale models</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vortex shedding</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kUtvEzEUhS0EoqXwA9ggS2zYGK4znrG9QUqqvqQgFoW15fEjdTVjF3smNP8eR2mrgsTGtnS_e67PPQi9p_CZAvAvhQKTjADtiOQtJewFOqYtbwiVgr-s70Z0pKOCHaE3pdwCQMdBvkZHDVDOWsaP0f2yFFfK6OKEk8frs2t8PfebHCwpRg8Of0vWDQXraPFV3LoyhY2eQop7-nJnc7K7qMdg8Mrd6G1Ic8Y-5crj5X0ou3F0Uw5VCa-G2Xu8qjw-H9Lvt-iV10Nx7x7uE_Tz_OzH6SVZf7-4Ol2uiWEcJmJMD9xYZ0wjBDXSC9fJTttF3_S896JpnWSu6cFr2lsrJWuN89z2rNOcgm1O0NeD7t3cj86aajTrQd3lMOq8U0kH9Xclhhu1SVvVUZCyhSrw6UEgp19zXYAaQzFuGHR0aS5qUTFoJFBR0Y__oLd1H7HaU1QIEPXo9oL0QJmcSsnOP32Ggtrnqg65qpqr2ueqWO358NzFU8djkBVYHIBSS3Hj8rPR_1X9A1QcsNw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lee, Chin Yik</creator><creator>Cant, Stewart</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow</title><author>Lee, Chin Yik ; Cant, Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ccb07cdecc3881c9f8e696ad2b3b7bf835e94e3b0fa1bdd9945cef7db46a710d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Dissipation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical prediction</topic><topic>Qualitative analysis</topic><topic>Radial velocity</topic><topic>Scale models</topic><topic>Shedding</topic><topic>Stability</topic><topic>Subgrid scale models</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vortex shedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chin Yik</creatorcontrib><creatorcontrib>Cant, Stewart</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chin Yik</au><au>Cant, Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><addtitle>Flow Turbul Combust</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>98</volume><issue>1</issue><spage>155</spage><epage>176</epage><pages>155-176</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>30174547</pmid><doi>10.1007/s10494-016-9751-4</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2017-01, Vol.98 (1), p.155-176
issn 1386-6184
1573-1987
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6109950
source Springer Online Journals Complete
subjects Automotive Engineering
Computational fluid dynamics
Dissipation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Experiments
Finite element method
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Kinetic energy
Mathematical models
Mechanical properties
Numerical prediction
Qualitative analysis
Radial velocity
Scale models
Shedding
Stability
Subgrid scale models
Turbulence models
Turbulent flow
Velocity
Vortex shedding
title Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20LES%20Subgrid-scale%20Models%20and%20Investigation%20of%20Hydrodynamic%20Behaviour%20for%20an%20Axisymmetrical%20Bluff%20Body%20Flow&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Lee,%20Chin%20Yik&rft.date=2017-01-01&rft.volume=98&rft.issue=1&rft.spage=155&rft.epage=176&rft.pages=155-176&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-016-9751-4&rft_dat=%3Cproquest_pubme%3E1880818860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880818860&rft_id=info:pmid/30174547&rfr_iscdi=true