Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils
Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2018-08, Vol.293 (34), p.12975-12991 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12991 |
---|---|
container_issue | 34 |
container_start_page | 12975 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Mehra, Surabhi Ghosh, Dhiman Kumar, Rakesh Mondal, Mrityunjoy Gadhe, Laxmikant G. Das, Subhadeep Anoop, Arunagiri Jha, Narendra N. Jacob, Reeba S. Chatterjee, Debdeep Ray, Soumik Singh, Nitu Kumar, Ashutosh Maji, Samir K. |
description | Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo. |
doi_str_mv | 10.1074/jbc.RA118.004267 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6109935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820310103</els_id><sourcerecordid>S0021925820310103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-3cb6170243c3722e88a9c7a8b472d2927d92c3bcb4b8e895a4616beb6adf97073</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoTju6dyV5gWqT1G9cCMOgM8KAIAruwk3qVvUd0qkhqS6ol5h38UV8pondOujCbJKbe86Xn8PYaym2UrTV21vrtl8upOy2QlSqaZ-wjRRdWZS1_P6UbYRQstCq7s7Yi5RuRR6Vls_ZmdK61krVG3Z_5Vc3JdhTmMa8hJD4DhbkC0QC65HjMKCbE58C__mjSGs4OI8UOIxjxBFmyg0IPe8pCyOGmcD7lcPRxucdcnAzLTQTZshw3ImYDn6mMHLYr36ing9kI_n0kj0bwCd89Xs-Z98-fvh6eV3cfL76dHlxU7iybeeidLaRrVBVmWulsOtAuxY6W7WqV1q1vVautM5WtsNO11A1srFoG-gH3Yq2PGfvT9y7g91j7_K1I3hzF2kPcTUTkPm3E2hnxmkxjRRal3UGiBPAxSmliMOjVwrzKxuTszHHbMwpm2x58_eZj4Y_YWTBu5MA88sXwmiSIwwOe4r5L00_0f_pD6ncpL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mehra, Surabhi ; Ghosh, Dhiman ; Kumar, Rakesh ; Mondal, Mrityunjoy ; Gadhe, Laxmikant G. ; Das, Subhadeep ; Anoop, Arunagiri ; Jha, Narendra N. ; Jacob, Reeba S. ; Chatterjee, Debdeep ; Ray, Soumik ; Singh, Nitu ; Kumar, Ashutosh ; Maji, Samir K.</creator><creatorcontrib>Mehra, Surabhi ; Ghosh, Dhiman ; Kumar, Rakesh ; Mondal, Mrityunjoy ; Gadhe, Laxmikant G. ; Das, Subhadeep ; Anoop, Arunagiri ; Jha, Narendra N. ; Jacob, Reeba S. ; Chatterjee, Debdeep ; Ray, Soumik ; Singh, Nitu ; Kumar, Ashutosh ; Maji, Samir K.</creatorcontrib><description>Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.004267</identifier><identifier>PMID: 29959225</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alpha-Synuclein - chemistry ; alpha-Synuclein - genetics ; alpha-Synuclein - metabolism ; amyloid ; Amyloid - chemistry ; amyloidogenesis ; Cell Proliferation ; Gene Expression Regulation - drug effects ; glycosaminoglycan ; Glycosaminoglycans - pharmacology ; Humans ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; neurodegeneration ; Parkinson's disease ; Polymers - chemistry ; Protein Aggregates - drug effects ; Protein Structure and Folding ; Tumor Cells, Cultured ; α-synuclein</subject><ispartof>The Journal of biological chemistry, 2018-08, Vol.293 (34), p.12975-12991</ispartof><rights>2018 © 2018 Mehra et al.</rights><rights>2018 Mehra et al.</rights><rights>2018 Mehra et al. 2018 Mehra et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-3cb6170243c3722e88a9c7a8b472d2927d92c3bcb4b8e895a4616beb6adf97073</citedby><cites>FETCH-LOGICAL-c377t-3cb6170243c3722e88a9c7a8b472d2927d92c3bcb4b8e895a4616beb6adf97073</cites><orcidid>0000-0001-9839-1860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109935/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109935/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29959225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehra, Surabhi</creatorcontrib><creatorcontrib>Ghosh, Dhiman</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Mondal, Mrityunjoy</creatorcontrib><creatorcontrib>Gadhe, Laxmikant G.</creatorcontrib><creatorcontrib>Das, Subhadeep</creatorcontrib><creatorcontrib>Anoop, Arunagiri</creatorcontrib><creatorcontrib>Jha, Narendra N.</creatorcontrib><creatorcontrib>Jacob, Reeba S.</creatorcontrib><creatorcontrib>Chatterjee, Debdeep</creatorcontrib><creatorcontrib>Ray, Soumik</creatorcontrib><creatorcontrib>Singh, Nitu</creatorcontrib><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Maji, Samir K.</creatorcontrib><title>Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.</description><subject>alpha-Synuclein - chemistry</subject><subject>alpha-Synuclein - genetics</subject><subject>alpha-Synuclein - metabolism</subject><subject>amyloid</subject><subject>Amyloid - chemistry</subject><subject>amyloidogenesis</subject><subject>Cell Proliferation</subject><subject>Gene Expression Regulation - drug effects</subject><subject>glycosaminoglycan</subject><subject>Glycosaminoglycans - pharmacology</subject><subject>Humans</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>neurodegeneration</subject><subject>Parkinson's disease</subject><subject>Polymers - chemistry</subject><subject>Protein Aggregates - drug effects</subject><subject>Protein Structure and Folding</subject><subject>Tumor Cells, Cultured</subject><subject>α-synuclein</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2KFDEUhYMoTju6dyV5gWqT1G9cCMOgM8KAIAruwk3qVvUd0qkhqS6ol5h38UV8pondOujCbJKbe86Xn8PYaym2UrTV21vrtl8upOy2QlSqaZ-wjRRdWZS1_P6UbYRQstCq7s7Yi5RuRR6Vls_ZmdK61krVG3Z_5Vc3JdhTmMa8hJD4DhbkC0QC65HjMKCbE58C__mjSGs4OI8UOIxjxBFmyg0IPe8pCyOGmcD7lcPRxucdcnAzLTQTZshw3ImYDn6mMHLYr36ing9kI_n0kj0bwCd89Xs-Z98-fvh6eV3cfL76dHlxU7iybeeidLaRrVBVmWulsOtAuxY6W7WqV1q1vVautM5WtsNO11A1srFoG-gH3Yq2PGfvT9y7g91j7_K1I3hzF2kPcTUTkPm3E2hnxmkxjRRal3UGiBPAxSmliMOjVwrzKxuTszHHbMwpm2x58_eZj4Y_YWTBu5MA88sXwmiSIwwOe4r5L00_0f_pD6ncpL8</recordid><startdate>20180824</startdate><enddate>20180824</enddate><creator>Mehra, Surabhi</creator><creator>Ghosh, Dhiman</creator><creator>Kumar, Rakesh</creator><creator>Mondal, Mrityunjoy</creator><creator>Gadhe, Laxmikant G.</creator><creator>Das, Subhadeep</creator><creator>Anoop, Arunagiri</creator><creator>Jha, Narendra N.</creator><creator>Jacob, Reeba S.</creator><creator>Chatterjee, Debdeep</creator><creator>Ray, Soumik</creator><creator>Singh, Nitu</creator><creator>Kumar, Ashutosh</creator><creator>Maji, Samir K.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9839-1860</orcidid></search><sort><creationdate>20180824</creationdate><title>Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils</title><author>Mehra, Surabhi ; Ghosh, Dhiman ; Kumar, Rakesh ; Mondal, Mrityunjoy ; Gadhe, Laxmikant G. ; Das, Subhadeep ; Anoop, Arunagiri ; Jha, Narendra N. ; Jacob, Reeba S. ; Chatterjee, Debdeep ; Ray, Soumik ; Singh, Nitu ; Kumar, Ashutosh ; Maji, Samir K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-3cb6170243c3722e88a9c7a8b472d2927d92c3bcb4b8e895a4616beb6adf97073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alpha-Synuclein - chemistry</topic><topic>alpha-Synuclein - genetics</topic><topic>alpha-Synuclein - metabolism</topic><topic>amyloid</topic><topic>Amyloid - chemistry</topic><topic>amyloidogenesis</topic><topic>Cell Proliferation</topic><topic>Gene Expression Regulation - drug effects</topic><topic>glycosaminoglycan</topic><topic>Glycosaminoglycans - pharmacology</topic><topic>Humans</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>neurodegeneration</topic><topic>Parkinson's disease</topic><topic>Polymers - chemistry</topic><topic>Protein Aggregates - drug effects</topic><topic>Protein Structure and Folding</topic><topic>Tumor Cells, Cultured</topic><topic>α-synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehra, Surabhi</creatorcontrib><creatorcontrib>Ghosh, Dhiman</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Mondal, Mrityunjoy</creatorcontrib><creatorcontrib>Gadhe, Laxmikant G.</creatorcontrib><creatorcontrib>Das, Subhadeep</creatorcontrib><creatorcontrib>Anoop, Arunagiri</creatorcontrib><creatorcontrib>Jha, Narendra N.</creatorcontrib><creatorcontrib>Jacob, Reeba S.</creatorcontrib><creatorcontrib>Chatterjee, Debdeep</creatorcontrib><creatorcontrib>Ray, Soumik</creatorcontrib><creatorcontrib>Singh, Nitu</creatorcontrib><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Maji, Samir K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehra, Surabhi</au><au>Ghosh, Dhiman</au><au>Kumar, Rakesh</au><au>Mondal, Mrityunjoy</au><au>Gadhe, Laxmikant G.</au><au>Das, Subhadeep</au><au>Anoop, Arunagiri</au><au>Jha, Narendra N.</au><au>Jacob, Reeba S.</au><au>Chatterjee, Debdeep</au><au>Ray, Soumik</au><au>Singh, Nitu</au><au>Kumar, Ashutosh</au><au>Maji, Samir K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-08-24</date><risdate>2018</risdate><volume>293</volume><issue>34</issue><spage>12975</spage><epage>12991</epage><pages>12975-12991</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29959225</pmid><doi>10.1074/jbc.RA118.004267</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9839-1860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-08, Vol.293 (34), p.12975-12991 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6109935 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | alpha-Synuclein - chemistry alpha-Synuclein - genetics alpha-Synuclein - metabolism amyloid Amyloid - chemistry amyloidogenesis Cell Proliferation Gene Expression Regulation - drug effects glycosaminoglycan Glycosaminoglycans - pharmacology Humans Neuroblastoma - metabolism Neuroblastoma - pathology neurodegeneration Parkinson's disease Polymers - chemistry Protein Aggregates - drug effects Protein Structure and Folding Tumor Cells, Cultured α-synuclein |
title | Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosaminoglycans%20have%20variable%20effects%20on%20%CE%B1-synuclein%20aggregation%20and%20differentially%20affect%20the%20activities%20of%20the%20resulting%20amyloid%20fibrils&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mehra,%20Surabhi&rft.date=2018-08-24&rft.volume=293&rft.issue=34&rft.spage=12975&rft.epage=12991&rft.pages=12975-12991&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.004267&rft_dat=%3Celsevier_pubme%3ES0021925820310103%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29959225&rft_els_id=S0021925820310103&rfr_iscdi=true |