Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury

Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory research 2018-08, Vol.19 (1), p.157-157
Hauptverfasser: Dolinay, Tamás, Aonbangkhen, Chanat, Zacharias, William, Cantu, Edward, Pogoriler, Jennifer, Stablow, Alec, Lawrence, Gladys G, Suzuki, Yoshikazu, Chenoweth, David M, Morrisey, Edward, Christie, Jason D, Beers, Michael F, Margulies, Susan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 157
container_title Respiratory research
container_volume 19
creator Dolinay, Tamás
Aonbangkhen, Chanat
Zacharias, William
Cantu, Edward
Pogoriler, Jennifer
Stablow, Alec
Lawrence, Gladys G
Suzuki, Yoshikazu
Chenoweth, David M
Morrisey, Edward
Christie, Jason D
Beers, Michael F
Margulies, Susan S
description Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.
doi_str_mv 10.1186/s12931-018-0856-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6106739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092542414</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-758a179c3c2cc2a02424d67526b5d14143dbde93bc6e8228966f529ef326d5113</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMotlZ_gBvJ0k00j0lmshGk-AJBEQV3QybJtGkzkzqZKfTfG7Eturn3wjmc83EBOCf4ipBCXEdCJSMIkwLhggtED8CYZIIjKdnn4f6mZAROYlxgTPIi58dgxDBhmaR4DMJrF3rrWrh0rYoWviHvlhba1oSVV7FRvdOws2kOfmh2Lhehgo01TvWhg6GGsU8ePYcpaG3b3vkfAbnWDNoa6Id2lqTF0G1OwVGtfLRn2z0BH_d379NH9Pzy8DS9fUYrKkSPcl4okkvNNNWaKkwzmhmRcyoqbkhGMmYqYyWrtLAFpYUUouZU2ppRYTghbAJufnNXQ5VAdYLqlC9XnWtUtymDcuV_pXXzchbWpSBY5EymgMttQBe-Bhv7snFRW-9Va8MQS4ol5YkqoUzAxd-ufcnuy-wbytuBuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092542414</pqid></control><display><type>article</type><title>Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dolinay, Tamás ; Aonbangkhen, Chanat ; Zacharias, William ; Cantu, Edward ; Pogoriler, Jennifer ; Stablow, Alec ; Lawrence, Gladys G ; Suzuki, Yoshikazu ; Chenoweth, David M ; Morrisey, Edward ; Christie, Jason D ; Beers, Michael F ; Margulies, Susan S</creator><creatorcontrib>Dolinay, Tamás ; Aonbangkhen, Chanat ; Zacharias, William ; Cantu, Edward ; Pogoriler, Jennifer ; Stablow, Alec ; Lawrence, Gladys G ; Suzuki, Yoshikazu ; Chenoweth, David M ; Morrisey, Edward ; Christie, Jason D ; Beers, Michael F ; Margulies, Susan S</creatorcontrib><description>Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.</description><identifier>ISSN: 1465-9921</identifier><identifier>EISSN: 1465-993X</identifier><identifier>DOI: 10.1186/s12931-018-0856-2</identifier><identifier>PMID: 30134920</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Adult ; Aged ; Animals ; eIF-2 Kinase - physiology ; Endoplasmic Reticulum Stress - physiology ; Female ; Humans ; Lung - metabolism ; Lung - pathology ; Male ; Middle Aged ; Pulmonary Stretch Receptors - metabolism ; Pulmonary Stretch Receptors - pathology ; Rats ; Rats, Sprague-Dawley ; Respiratory Mucosa - metabolism ; Respiratory Mucosa - pathology ; Swine ; Ventilator-Induced Lung Injury - metabolism ; Ventilator-Induced Lung Injury - pathology</subject><ispartof>Respiratory research, 2018-08, Vol.19 (1), p.157-157</ispartof><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3615-7902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30134920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolinay, Tamás</creatorcontrib><creatorcontrib>Aonbangkhen, Chanat</creatorcontrib><creatorcontrib>Zacharias, William</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Pogoriler, Jennifer</creatorcontrib><creatorcontrib>Stablow, Alec</creatorcontrib><creatorcontrib>Lawrence, Gladys G</creatorcontrib><creatorcontrib>Suzuki, Yoshikazu</creatorcontrib><creatorcontrib>Chenoweth, David M</creatorcontrib><creatorcontrib>Morrisey, Edward</creatorcontrib><creatorcontrib>Christie, Jason D</creatorcontrib><creatorcontrib>Beers, Michael F</creatorcontrib><creatorcontrib>Margulies, Susan S</creatorcontrib><title>Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury</title><title>Respiratory research</title><addtitle>Respir Res</addtitle><description>Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.</description><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>eIF-2 Kinase - physiology</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Pulmonary Stretch Receptors - metabolism</subject><subject>Pulmonary Stretch Receptors - pathology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Respiratory Mucosa - pathology</subject><subject>Swine</subject><subject>Ventilator-Induced Lung Injury - metabolism</subject><subject>Ventilator-Induced Lung Injury - pathology</subject><issn>1465-9921</issn><issn>1465-993X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLAzEUhYMotlZ_gBvJ0k00j0lmshGk-AJBEQV3QybJtGkzkzqZKfTfG7Eturn3wjmc83EBOCf4ipBCXEdCJSMIkwLhggtED8CYZIIjKdnn4f6mZAROYlxgTPIi58dgxDBhmaR4DMJrF3rrWrh0rYoWviHvlhba1oSVV7FRvdOws2kOfmh2Lhehgo01TvWhg6GGsU8ePYcpaG3b3vkfAbnWDNoa6Id2lqTF0G1OwVGtfLRn2z0BH_d379NH9Pzy8DS9fUYrKkSPcl4okkvNNNWaKkwzmhmRcyoqbkhGMmYqYyWrtLAFpYUUouZU2ppRYTghbAJufnNXQ5VAdYLqlC9XnWtUtymDcuV_pXXzchbWpSBY5EymgMttQBe-Bhv7snFRW-9Va8MQS4ol5YkqoUzAxd-ufcnuy-wbytuBuA</recordid><startdate>20180822</startdate><enddate>20180822</enddate><creator>Dolinay, Tamás</creator><creator>Aonbangkhen, Chanat</creator><creator>Zacharias, William</creator><creator>Cantu, Edward</creator><creator>Pogoriler, Jennifer</creator><creator>Stablow, Alec</creator><creator>Lawrence, Gladys G</creator><creator>Suzuki, Yoshikazu</creator><creator>Chenoweth, David M</creator><creator>Morrisey, Edward</creator><creator>Christie, Jason D</creator><creator>Beers, Michael F</creator><creator>Margulies, Susan S</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3615-7902</orcidid></search><sort><creationdate>20180822</creationdate><title>Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury</title><author>Dolinay, Tamás ; Aonbangkhen, Chanat ; Zacharias, William ; Cantu, Edward ; Pogoriler, Jennifer ; Stablow, Alec ; Lawrence, Gladys G ; Suzuki, Yoshikazu ; Chenoweth, David M ; Morrisey, Edward ; Christie, Jason D ; Beers, Michael F ; Margulies, Susan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-758a179c3c2cc2a02424d67526b5d14143dbde93bc6e8228966f529ef326d5113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>eIF-2 Kinase - physiology</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Pulmonary Stretch Receptors - metabolism</topic><topic>Pulmonary Stretch Receptors - pathology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Respiratory Mucosa - pathology</topic><topic>Swine</topic><topic>Ventilator-Induced Lung Injury - metabolism</topic><topic>Ventilator-Induced Lung Injury - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolinay, Tamás</creatorcontrib><creatorcontrib>Aonbangkhen, Chanat</creatorcontrib><creatorcontrib>Zacharias, William</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Pogoriler, Jennifer</creatorcontrib><creatorcontrib>Stablow, Alec</creatorcontrib><creatorcontrib>Lawrence, Gladys G</creatorcontrib><creatorcontrib>Suzuki, Yoshikazu</creatorcontrib><creatorcontrib>Chenoweth, David M</creatorcontrib><creatorcontrib>Morrisey, Edward</creatorcontrib><creatorcontrib>Christie, Jason D</creatorcontrib><creatorcontrib>Beers, Michael F</creatorcontrib><creatorcontrib>Margulies, Susan S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Respiratory research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolinay, Tamás</au><au>Aonbangkhen, Chanat</au><au>Zacharias, William</au><au>Cantu, Edward</au><au>Pogoriler, Jennifer</au><au>Stablow, Alec</au><au>Lawrence, Gladys G</au><au>Suzuki, Yoshikazu</au><au>Chenoweth, David M</au><au>Morrisey, Edward</au><au>Christie, Jason D</au><au>Beers, Michael F</au><au>Margulies, Susan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury</atitle><jtitle>Respiratory research</jtitle><addtitle>Respir Res</addtitle><date>2018-08-22</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>157</spage><epage>157</epage><pages>157-157</pages><issn>1465-9921</issn><eissn>1465-993X</eissn><abstract>Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>30134920</pmid><doi>10.1186/s12931-018-0856-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3615-7902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-9921
ispartof Respiratory research, 2018-08, Vol.19 (1), p.157-157
issn 1465-9921
1465-993X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6106739
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Aged
Animals
eIF-2 Kinase - physiology
Endoplasmic Reticulum Stress - physiology
Female
Humans
Lung - metabolism
Lung - pathology
Male
Middle Aged
Pulmonary Stretch Receptors - metabolism
Pulmonary Stretch Receptors - pathology
Rats
Rats, Sprague-Dawley
Respiratory Mucosa - metabolism
Respiratory Mucosa - pathology
Swine
Ventilator-Induced Lung Injury - metabolism
Ventilator-Induced Lung Injury - pathology
title Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20R-like%20endoplasmatic%20reticulum%20kinase%20is%20a%20mediator%20of%20stretch%20in%20ventilator-induced%20lung%20injury&rft.jtitle=Respiratory%20research&rft.au=Dolinay,%20Tam%C3%A1s&rft.date=2018-08-22&rft.volume=19&rft.issue=1&rft.spage=157&rft.epage=157&rft.pages=157-157&rft.issn=1465-9921&rft.eissn=1465-993X&rft_id=info:doi/10.1186/s12931-018-0856-2&rft_dat=%3Cproquest_pubme%3E2092542414%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092542414&rft_id=info:pmid/30134920&rfr_iscdi=true