Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small‐diameter TEVGs that are mechanically stable and promote funct...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2018-08, Vol.7 (15), p.e1701461-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e1701461 |
container_title | Advanced healthcare materials |
container_volume | 7 |
creator | Radke, Daniel Jia, Wenkai Sharma, Dhavan Fena, Kemin Wang, Guifang Goldman, Jeremy Zhao, Feng |
description | Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small‐diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood‐contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood‐contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Developing a biocompatible blood‐contacting surface remains a major challenge for tissue engineered vascular grafts (TEVGs). This paper reviews the current state of TEVGs with an emphasis on the blood‐contacting surface, which includes general vascular physiology and developmental challenges, materials currently employed in TEVGs, and strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment. |
doi_str_mv | 10.1002/adhm.201701461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6105365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035706318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5711-74620d349f66c2c52b5151a78d5479d0b79625e9786c0178ba0cf360c6e52d1d3</originalsourceid><addsrcrecordid>eNqFkctuGyEUhkdVqyZKs-2yQuqmG7vADDDTRSXXSZNKqSo1ly3CzJkxEQMOMI686yP0GfMkwXLqXjZlA-h8fHD4i-I1wVOCMX2v2uUwpZgITCpOnhWHlDR0Qjlrnu_XFT4ojmO8xXlwRnhNXhYHtBElFSU7LDZXJsYR0KnrjQMIxvVIJZSWgD5Z79uHHz_n3iWl07ZyOYZOafiAZug7rA3cI9-h-VJZC66HiJRr0WUKKkFv8tY4dKOiHq0K6CyoLqETWIP1qwFcelW86JSNcPw0HxXXn0-v5ueTi29nX-azi4lmgpCJqDjFbVk1HeeaakYXjDCiRN2ySjQtXoiGUwaNqLnOP1EvFNZdybHmwGhL2vKo-LjzrsbFAK3OVwdl5SqYQYWN9MrIvyvOLGXv15ITzErOsuDdkyD4uxFikoOJGqxVDvwYJcUlE5iXpM7o23_QWz8Gl9vLVF3VjJQNztR0R-ngYwzQ7R9DsNwGK7fByn2w-cCbP1vY479izECzA-6Nhc1_dHJ2cv71t_wRzK2wSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084851390</pqid></control><display><type>article</type><title>Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Radke, Daniel ; Jia, Wenkai ; Sharma, Dhavan ; Fena, Kemin ; Wang, Guifang ; Goldman, Jeremy ; Zhao, Feng</creator><creatorcontrib>Radke, Daniel ; Jia, Wenkai ; Sharma, Dhavan ; Fena, Kemin ; Wang, Guifang ; Goldman, Jeremy ; Zhao, Feng</creatorcontrib><description>Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small‐diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood‐contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood‐contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Developing a biocompatible blood‐contacting surface remains a major challenge for tissue engineered vascular grafts (TEVGs). This paper reviews the current state of TEVGs with an emphasis on the blood‐contacting surface, which includes general vascular physiology and developmental challenges, materials currently employed in TEVGs, and strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201701461</identifier><identifier>PMID: 29732735</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatibility ; Biodegradability ; Biodegradable materials ; Biodegradation ; Biomimetics ; Blood ; Blood Vessel Prosthesis ; Blood Vessel Prosthesis Implantation ; blood‐contacting surfaces ; Collagen - chemistry ; Endothelial cells ; endothelialization ; Grafting ; Grafts ; Heparin ; Humans ; Implantation ; Inflammation ; Muscles ; Peptides ; R&D ; Research & development ; Reviews ; Smooth muscle ; Stem cells ; surface modification ; Swine ; Thromboembolism ; Thrombosis ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; vascular engineering ; vascular grafts</subject><ispartof>Advanced healthcare materials, 2018-08, Vol.7 (15), p.e1701461-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5711-74620d349f66c2c52b5151a78d5479d0b79625e9786c0178ba0cf360c6e52d1d3</citedby><cites>FETCH-LOGICAL-c5711-74620d349f66c2c52b5151a78d5479d0b79625e9786c0178ba0cf360c6e52d1d3</cites><orcidid>0000-0003-4138-9027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201701461$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201701461$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29732735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radke, Daniel</creatorcontrib><creatorcontrib>Jia, Wenkai</creatorcontrib><creatorcontrib>Sharma, Dhavan</creatorcontrib><creatorcontrib>Fena, Kemin</creatorcontrib><creatorcontrib>Wang, Guifang</creatorcontrib><creatorcontrib>Goldman, Jeremy</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><title>Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small‐diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood‐contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood‐contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Developing a biocompatible blood‐contacting surface remains a major challenge for tissue engineered vascular grafts (TEVGs). This paper reviews the current state of TEVGs with an emphasis on the blood‐contacting surface, which includes general vascular physiology and developmental challenges, materials currently employed in TEVGs, and strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biomimetics</subject><subject>Blood</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessel Prosthesis Implantation</subject><subject>blood‐contacting surfaces</subject><subject>Collagen - chemistry</subject><subject>Endothelial cells</subject><subject>endothelialization</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Heparin</subject><subject>Humans</subject><subject>Implantation</subject><subject>Inflammation</subject><subject>Muscles</subject><subject>Peptides</subject><subject>R&D</subject><subject>Research & development</subject><subject>Reviews</subject><subject>Smooth muscle</subject><subject>Stem cells</subject><subject>surface modification</subject><subject>Swine</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>vascular engineering</subject><subject>vascular grafts</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuGyEUhkdVqyZKs-2yQuqmG7vADDDTRSXXSZNKqSo1ly3CzJkxEQMOMI686yP0GfMkwXLqXjZlA-h8fHD4i-I1wVOCMX2v2uUwpZgITCpOnhWHlDR0Qjlrnu_XFT4ojmO8xXlwRnhNXhYHtBElFSU7LDZXJsYR0KnrjQMIxvVIJZSWgD5Z79uHHz_n3iWl07ZyOYZOafiAZug7rA3cI9-h-VJZC66HiJRr0WUKKkFv8tY4dKOiHq0K6CyoLqETWIP1qwFcelW86JSNcPw0HxXXn0-v5ueTi29nX-azi4lmgpCJqDjFbVk1HeeaakYXjDCiRN2ySjQtXoiGUwaNqLnOP1EvFNZdybHmwGhL2vKo-LjzrsbFAK3OVwdl5SqYQYWN9MrIvyvOLGXv15ITzErOsuDdkyD4uxFikoOJGqxVDvwYJcUlE5iXpM7o23_QWz8Gl9vLVF3VjJQNztR0R-ngYwzQ7R9DsNwGK7fByn2w-cCbP1vY479izECzA-6Nhc1_dHJ2cv71t_wRzK2wSw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Radke, Daniel</creator><creator>Jia, Wenkai</creator><creator>Sharma, Dhavan</creator><creator>Fena, Kemin</creator><creator>Wang, Guifang</creator><creator>Goldman, Jeremy</creator><creator>Zhao, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4138-9027</orcidid></search><sort><creationdate>201808</creationdate><title>Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development</title><author>Radke, Daniel ; Jia, Wenkai ; Sharma, Dhavan ; Fena, Kemin ; Wang, Guifang ; Goldman, Jeremy ; Zhao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5711-74620d349f66c2c52b5151a78d5479d0b79625e9786c0178ba0cf360c6e52d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biomimetics</topic><topic>Blood</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessel Prosthesis Implantation</topic><topic>blood‐contacting surfaces</topic><topic>Collagen - chemistry</topic><topic>Endothelial cells</topic><topic>endothelialization</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Heparin</topic><topic>Humans</topic><topic>Implantation</topic><topic>Inflammation</topic><topic>Muscles</topic><topic>Peptides</topic><topic>R&D</topic><topic>Research & development</topic><topic>Reviews</topic><topic>Smooth muscle</topic><topic>Stem cells</topic><topic>surface modification</topic><topic>Swine</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>vascular engineering</topic><topic>vascular grafts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radke, Daniel</creatorcontrib><creatorcontrib>Jia, Wenkai</creatorcontrib><creatorcontrib>Sharma, Dhavan</creatorcontrib><creatorcontrib>Fena, Kemin</creatorcontrib><creatorcontrib>Wang, Guifang</creatorcontrib><creatorcontrib>Goldman, Jeremy</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radke, Daniel</au><au>Jia, Wenkai</au><au>Sharma, Dhavan</au><au>Fena, Kemin</au><au>Wang, Guifang</au><au>Goldman, Jeremy</au><au>Zhao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2018-08</date><risdate>2018</risdate><volume>7</volume><issue>15</issue><spage>e1701461</spage><epage>n/a</epage><pages>e1701461-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small‐diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood‐contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood‐contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Developing a biocompatible blood‐contacting surface remains a major challenge for tissue engineered vascular grafts (TEVGs). This paper reviews the current state of TEVGs with an emphasis on the blood‐contacting surface, which includes general vascular physiology and developmental challenges, materials currently employed in TEVGs, and strategies to modify blood‐contacting surfaces to resist thrombosis and control cellular recruitment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29732735</pmid><doi>10.1002/adhm.201701461</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4138-9027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2018-08, Vol.7 (15), p.e1701461-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6105365 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Biocompatibility Biodegradability Biodegradable materials Biodegradation Biomimetics Blood Blood Vessel Prosthesis Blood Vessel Prosthesis Implantation blood‐contacting surfaces Collagen - chemistry Endothelial cells endothelialization Grafting Grafts Heparin Humans Implantation Inflammation Muscles Peptides R&D Research & development Reviews Smooth muscle Stem cells surface modification Swine Thromboembolism Thrombosis Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry vascular engineering vascular grafts |
title | Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%20Engineering%20at%20the%20Blood%E2%80%90Contacting%20Surface:%20A%20Review%20of%20Challenges%20and%20Strategies%20in%20Vascular%20Graft%20Development&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Radke,%20Daniel&rft.date=2018-08&rft.volume=7&rft.issue=15&rft.spage=e1701461&rft.epage=n/a&rft.pages=e1701461-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201701461&rft_dat=%3Cproquest_pubme%3E2035706318%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084851390&rft_id=info:pmid/29732735&rfr_iscdi=true |