Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans

Cell-autonomous and cell-nonautonomous mechanisms of neuro-degeneration appear to occur in the proteinopathies, including Alzheimer’s and Parkinson’s diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (33), p.E7710-E7719
Hauptverfasser: Madhivanan, Kayalvizhi, Greiner, Erin R., Alves-Ferreira, Miguel, Soriano-Castell, David, Rouzbeh, Nirvan, Aguirre, Carlos A., Paulsson, Johan F., Chapman, Justin, Jiang, Xin, Ooi, Felicia K., Lemos, Carolina, Dillin, Andrew, Prahlad, Veena, Kelly, Jeffery W., Encalada, Sandra E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E7719
container_issue 33
container_start_page E7710
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Madhivanan, Kayalvizhi
Greiner, Erin R.
Alves-Ferreira, Miguel
Soriano-Castell, David
Rouzbeh, Nirvan
Aguirre, Carlos A.
Paulsson, Johan F.
Chapman, Justin
Jiang, Xin
Ooi, Felicia K.
Lemos, Carolina
Dillin, Andrew
Prahlad, Veena
Kelly, Jeffery W.
Encalada, Sandra E.
description Cell-autonomous and cell-nonautonomous mechanisms of neuro-degeneration appear to occur in the proteinopathies, including Alzheimer’s and Parkinson’s diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects post-mitotic tissue degeneration observed in the proteinopathies.
doi_str_mv 10.1073/pnas.1801117115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26530269</jstor_id><sourcerecordid>26530269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-44a1a799007d2e48769bb9615103ea2dccc57b1df520d26c297f0fd3ddc8e64c3</originalsourceid><addsrcrecordid>eNpdkUmPEzEQhS0EYsLAmROoJS5ceqa8tJcLEorYpJG4wNly2-7EUccOtntE_j2OMoTlVKqqr5799BB6ieEGg6C3h2jKDZaAMRYYD4_QCoPCPWcKHqMVABG9ZIRdoWel7ABADRKeoisKwDFVbIWWtZ_nZTa5s7M32UTruzR1NmTbpjXETVfbtNTtMfvWds7b7E3xpbPtso8pmqWmmPZpKd0hp-pTTT-DDfXYNXxtfEx5a0YXaiidn_2mqT1HTyYzF__ioV6j7x8_fFt_7u--fvqyfn_XW8Zo7Rkz2AilAIQjnknB1TgqjgcM1BvirLWDGLGbBgKOcEuUmGBy1DkrPWeWXqN3Z93DMu69sz42M7M-5LA3-aiTCfrfTQxbvUn3moNqz4om8PZBIKcfiy9V70M5GTfRN8OagARJhZRDQ9_8h-7SkmOz1ygllBCSy0bdnimbUynZT5fPYNCnSPUpUv0n0nbx-m8PF_53hg14dQZ2paZ82RM-UCBc0V-L7arx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097977868</pqid></control><display><type>article</type><title>Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Madhivanan, Kayalvizhi ; Greiner, Erin R. ; Alves-Ferreira, Miguel ; Soriano-Castell, David ; Rouzbeh, Nirvan ; Aguirre, Carlos A. ; Paulsson, Johan F. ; Chapman, Justin ; Jiang, Xin ; Ooi, Felicia K. ; Lemos, Carolina ; Dillin, Andrew ; Prahlad, Veena ; Kelly, Jeffery W. ; Encalada, Sandra E.</creator><creatorcontrib>Madhivanan, Kayalvizhi ; Greiner, Erin R. ; Alves-Ferreira, Miguel ; Soriano-Castell, David ; Rouzbeh, Nirvan ; Aguirre, Carlos A. ; Paulsson, Johan F. ; Chapman, Justin ; Jiang, Xin ; Ooi, Felicia K. ; Lemos, Carolina ; Dillin, Andrew ; Prahlad, Veena ; Kelly, Jeffery W. ; Encalada, Sandra E.</creatorcontrib><description>Cell-autonomous and cell-nonautonomous mechanisms of neuro-degeneration appear to occur in the proteinopathies, including Alzheimer’s and Parkinson’s diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects post-mitotic tissue degeneration observed in the proteinopathies.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1801117115</identifier><identifier>PMID: 30061394</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amyloid Neuropathies - genetics ; Amyloid Neuropathies - metabolism ; Animal models ; Animals ; Animals, Genetically Modified ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cellular biology ; Degeneration ; Degradation ; Humans ; Macrophages ; Muscles ; Neurodegeneration ; Neurogenesis ; Neurons ; Neurotoxicity ; Pain perception ; Peripheral neuropathy ; Pharmacology ; PNAS Plus ; Prealbumin - genetics ; Prealbumin - metabolism ; Protein Aggregates ; Protein Aggregation, Pathological - genetics ; Protein Aggregation, Pathological - metabolism ; Protein folding ; Proteins ; RNA-mediated interference ; Sensory neurons ; Toxicity ; Transthyretin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (33), p.E7710-E7719</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 14, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-44a1a799007d2e48769bb9615103ea2dccc57b1df520d26c297f0fd3ddc8e64c3</citedby><cites>FETCH-LOGICAL-c443t-44a1a799007d2e48769bb9615103ea2dccc57b1df520d26c297f0fd3ddc8e64c3</cites><orcidid>0000-0001-7538-1811 ; 0000-0003-4766-2477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26530269$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26530269$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30061394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madhivanan, Kayalvizhi</creatorcontrib><creatorcontrib>Greiner, Erin R.</creatorcontrib><creatorcontrib>Alves-Ferreira, Miguel</creatorcontrib><creatorcontrib>Soriano-Castell, David</creatorcontrib><creatorcontrib>Rouzbeh, Nirvan</creatorcontrib><creatorcontrib>Aguirre, Carlos A.</creatorcontrib><creatorcontrib>Paulsson, Johan F.</creatorcontrib><creatorcontrib>Chapman, Justin</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Ooi, Felicia K.</creatorcontrib><creatorcontrib>Lemos, Carolina</creatorcontrib><creatorcontrib>Dillin, Andrew</creatorcontrib><creatorcontrib>Prahlad, Veena</creatorcontrib><creatorcontrib>Kelly, Jeffery W.</creatorcontrib><creatorcontrib>Encalada, Sandra E.</creatorcontrib><title>Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cell-autonomous and cell-nonautonomous mechanisms of neuro-degeneration appear to occur in the proteinopathies, including Alzheimer’s and Parkinson’s diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects post-mitotic tissue degeneration observed in the proteinopathies.</description><subject>Amyloid Neuropathies - genetics</subject><subject>Amyloid Neuropathies - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cellular biology</subject><subject>Degeneration</subject><subject>Degradation</subject><subject>Humans</subject><subject>Macrophages</subject><subject>Muscles</subject><subject>Neurodegeneration</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurotoxicity</subject><subject>Pain perception</subject><subject>Peripheral neuropathy</subject><subject>Pharmacology</subject><subject>PNAS Plus</subject><subject>Prealbumin - genetics</subject><subject>Prealbumin - metabolism</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological - genetics</subject><subject>Protein Aggregation, Pathological - metabolism</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>RNA-mediated interference</subject><subject>Sensory neurons</subject><subject>Toxicity</subject><subject>Transthyretin</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUmPEzEQhS0EYsLAmROoJS5ceqa8tJcLEorYpJG4wNly2-7EUccOtntE_j2OMoTlVKqqr5799BB6ieEGg6C3h2jKDZaAMRYYD4_QCoPCPWcKHqMVABG9ZIRdoWel7ABADRKeoisKwDFVbIWWtZ_nZTa5s7M32UTruzR1NmTbpjXETVfbtNTtMfvWds7b7E3xpbPtso8pmqWmmPZpKd0hp-pTTT-DDfXYNXxtfEx5a0YXaiidn_2mqT1HTyYzF__ioV6j7x8_fFt_7u--fvqyfn_XW8Zo7Rkz2AilAIQjnknB1TgqjgcM1BvirLWDGLGbBgKOcEuUmGBy1DkrPWeWXqN3Z93DMu69sz42M7M-5LA3-aiTCfrfTQxbvUn3moNqz4om8PZBIKcfiy9V70M5GTfRN8OagARJhZRDQ9_8h-7SkmOz1ygllBCSy0bdnimbUynZT5fPYNCnSPUpUv0n0nbx-m8PF_53hg14dQZ2paZ82RM-UCBc0V-L7arx</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Madhivanan, Kayalvizhi</creator><creator>Greiner, Erin R.</creator><creator>Alves-Ferreira, Miguel</creator><creator>Soriano-Castell, David</creator><creator>Rouzbeh, Nirvan</creator><creator>Aguirre, Carlos A.</creator><creator>Paulsson, Johan F.</creator><creator>Chapman, Justin</creator><creator>Jiang, Xin</creator><creator>Ooi, Felicia K.</creator><creator>Lemos, Carolina</creator><creator>Dillin, Andrew</creator><creator>Prahlad, Veena</creator><creator>Kelly, Jeffery W.</creator><creator>Encalada, Sandra E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7538-1811</orcidid><orcidid>https://orcid.org/0000-0003-4766-2477</orcidid></search><sort><creationdate>20180814</creationdate><title>Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans</title><author>Madhivanan, Kayalvizhi ; Greiner, Erin R. ; Alves-Ferreira, Miguel ; Soriano-Castell, David ; Rouzbeh, Nirvan ; Aguirre, Carlos A. ; Paulsson, Johan F. ; Chapman, Justin ; Jiang, Xin ; Ooi, Felicia K. ; Lemos, Carolina ; Dillin, Andrew ; Prahlad, Veena ; Kelly, Jeffery W. ; Encalada, Sandra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-44a1a799007d2e48769bb9615103ea2dccc57b1df520d26c297f0fd3ddc8e64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amyloid Neuropathies - genetics</topic><topic>Amyloid Neuropathies - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cellular biology</topic><topic>Degeneration</topic><topic>Degradation</topic><topic>Humans</topic><topic>Macrophages</topic><topic>Muscles</topic><topic>Neurodegeneration</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurotoxicity</topic><topic>Pain perception</topic><topic>Peripheral neuropathy</topic><topic>Pharmacology</topic><topic>PNAS Plus</topic><topic>Prealbumin - genetics</topic><topic>Prealbumin - metabolism</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological - genetics</topic><topic>Protein Aggregation, Pathological - metabolism</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>RNA-mediated interference</topic><topic>Sensory neurons</topic><topic>Toxicity</topic><topic>Transthyretin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhivanan, Kayalvizhi</creatorcontrib><creatorcontrib>Greiner, Erin R.</creatorcontrib><creatorcontrib>Alves-Ferreira, Miguel</creatorcontrib><creatorcontrib>Soriano-Castell, David</creatorcontrib><creatorcontrib>Rouzbeh, Nirvan</creatorcontrib><creatorcontrib>Aguirre, Carlos A.</creatorcontrib><creatorcontrib>Paulsson, Johan F.</creatorcontrib><creatorcontrib>Chapman, Justin</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Ooi, Felicia K.</creatorcontrib><creatorcontrib>Lemos, Carolina</creatorcontrib><creatorcontrib>Dillin, Andrew</creatorcontrib><creatorcontrib>Prahlad, Veena</creatorcontrib><creatorcontrib>Kelly, Jeffery W.</creatorcontrib><creatorcontrib>Encalada, Sandra E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhivanan, Kayalvizhi</au><au>Greiner, Erin R.</au><au>Alves-Ferreira, Miguel</au><au>Soriano-Castell, David</au><au>Rouzbeh, Nirvan</au><au>Aguirre, Carlos A.</au><au>Paulsson, Johan F.</au><au>Chapman, Justin</au><au>Jiang, Xin</au><au>Ooi, Felicia K.</au><au>Lemos, Carolina</au><au>Dillin, Andrew</au><au>Prahlad, Veena</au><au>Kelly, Jeffery W.</au><au>Encalada, Sandra E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-08-14</date><risdate>2018</risdate><volume>115</volume><issue>33</issue><spage>E7710</spage><epage>E7719</epage><pages>E7710-E7719</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Cell-autonomous and cell-nonautonomous mechanisms of neuro-degeneration appear to occur in the proteinopathies, including Alzheimer’s and Parkinson’s diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects post-mitotic tissue degeneration observed in the proteinopathies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30061394</pmid><doi>10.1073/pnas.1801117115</doi><orcidid>https://orcid.org/0000-0001-7538-1811</orcidid><orcidid>https://orcid.org/0000-0003-4766-2477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (33), p.E7710-E7719
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099907
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amyloid Neuropathies - genetics
Amyloid Neuropathies - metabolism
Animal models
Animals
Animals, Genetically Modified
Biological Sciences
Caenorhabditis elegans
Caenorhabditis elegans - cytology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cellular biology
Degeneration
Degradation
Humans
Macrophages
Muscles
Neurodegeneration
Neurogenesis
Neurons
Neurotoxicity
Pain perception
Peripheral neuropathy
Pharmacology
PNAS Plus
Prealbumin - genetics
Prealbumin - metabolism
Protein Aggregates
Protein Aggregation, Pathological - genetics
Protein Aggregation, Pathological - metabolism
Protein folding
Proteins
RNA-mediated interference
Sensory neurons
Toxicity
Transthyretin
title Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20clearance%20of%20circulating%20transthyretin%20decreases%20cell-nonautonomous%20proteotoxicity%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Madhivanan,%20Kayalvizhi&rft.date=2018-08-14&rft.volume=115&rft.issue=33&rft.spage=E7710&rft.epage=E7719&rft.pages=E7710-E7719&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1801117115&rft_dat=%3Cjstor_pubme%3E26530269%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097977868&rft_id=info:pmid/30061394&rft_jstor_id=26530269&rfr_iscdi=true