Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication
During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-08, Vol.115 (33), p.8364-8369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8369 |
---|---|
container_issue | 33 |
container_start_page | 8364 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Tunnacliffe, Edward Corrigan, Adam M. Chubb, Jonathan R. |
description | During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong “bursty” behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting. |
doi_str_mv | 10.1073/pnas.1800943115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26530244</jstor_id><sourcerecordid>26530244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6337e2d767ac77500b045822d224ca5117f67900e9921757e216576cb1fa1c403</originalsourceid><addsrcrecordid>eNpdkctP3DAQxq2qqGyBc0-gSFx6CYwdP-JLpQrRgoQEBzhbXsfZepXYwU6o-O9xtMvyOI0085tvHh9CPzCcYRDV-eB1OsM1gKQVxuwLWmCQuORUwle0ACCirCmh--h7SmvIGKvhG9qvADimUC-QvouhD6ONZW8bp0fbFI17sjG51hk9uuCL0BZj1D6Z6IY5obtiOcU0Or8qmmeve2dS0YauC__n1Mp6WzTT0G37D9Feq7tkj7bxAD38uby_uCpvbv9eX_y-KQ0DOZa8qoQljeBCGyEYwBIoqwlpCKFGM4xFy4UEsFISLFhmMWeCmyVuNTYUqgP0a6M7TMt8i7E-b92pIbpex2cVtFMfK979U6vwpDhIKYFkgZ9bgRgeJ5tG1btkbNdpb8OUFIEa6jwIZEZPP6HrMMX8mZmSQgosxCx4vqFMDClF2-6WwaBm-9Rsn3qzL3ecvL9hx7_6lYHjDbBOY4i7OuGsAkJp9QJTH6Fn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097971772</pqid></control><display><type>article</type><title>Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tunnacliffe, Edward ; Corrigan, Adam M. ; Chubb, Jonathan R.</creator><creatorcontrib>Tunnacliffe, Edward ; Corrigan, Adam M. ; Chubb, Jonathan R.</creatorcontrib><description>During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong “bursty” behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800943115</identifier><identifier>PMID: 30061408</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actins - genetics ; Amino acid sequence ; Biological Sciences ; Bursting strength ; Cell Line ; Dictyostelium - genetics ; Gene Duplication ; Gene expression ; Gene Expression Regulation ; Gene families ; Genes ; Genomes ; Genomics ; Promoter Regions, Genetic ; Proteins ; Regulatory sequences ; Reproduction (copying) ; Transcription ; Transcription, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (33), p.8364-8369</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 14, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6337e2d767ac77500b045822d224ca5117f67900e9921757e216576cb1fa1c403</citedby><cites>FETCH-LOGICAL-c509t-6337e2d767ac77500b045822d224ca5117f67900e9921757e216576cb1fa1c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26530244$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26530244$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30061408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tunnacliffe, Edward</creatorcontrib><creatorcontrib>Corrigan, Adam M.</creatorcontrib><creatorcontrib>Chubb, Jonathan R.</creatorcontrib><title>Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong “bursty” behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting.</description><subject>Actin</subject><subject>Actins - genetics</subject><subject>Amino acid sequence</subject><subject>Biological Sciences</subject><subject>Bursting strength</subject><subject>Cell Line</subject><subject>Dictyostelium - genetics</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Regulatory sequences</subject><subject>Reproduction (copying)</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctP3DAQxq2qqGyBc0-gSFx6CYwdP-JLpQrRgoQEBzhbXsfZepXYwU6o-O9xtMvyOI0085tvHh9CPzCcYRDV-eB1OsM1gKQVxuwLWmCQuORUwle0ACCirCmh--h7SmvIGKvhG9qvADimUC-QvouhD6ONZW8bp0fbFI17sjG51hk9uuCL0BZj1D6Z6IY5obtiOcU0Or8qmmeve2dS0YauC__n1Mp6WzTT0G37D9Feq7tkj7bxAD38uby_uCpvbv9eX_y-KQ0DOZa8qoQljeBCGyEYwBIoqwlpCKFGM4xFy4UEsFISLFhmMWeCmyVuNTYUqgP0a6M7TMt8i7E-b92pIbpex2cVtFMfK979U6vwpDhIKYFkgZ9bgRgeJ5tG1btkbNdpb8OUFIEa6jwIZEZPP6HrMMX8mZmSQgosxCx4vqFMDClF2-6WwaBm-9Rsn3qzL3ecvL9hx7_6lYHjDbBOY4i7OuGsAkJp9QJTH6Fn</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Tunnacliffe, Edward</creator><creator>Corrigan, Adam M.</creator><creator>Chubb, Jonathan R.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180814</creationdate><title>Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication</title><author>Tunnacliffe, Edward ; Corrigan, Adam M. ; Chubb, Jonathan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6337e2d767ac77500b045822d224ca5117f67900e9921757e216576cb1fa1c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>Actins - genetics</topic><topic>Amino acid sequence</topic><topic>Biological Sciences</topic><topic>Bursting strength</topic><topic>Cell Line</topic><topic>Dictyostelium - genetics</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Regulatory sequences</topic><topic>Reproduction (copying)</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tunnacliffe, Edward</creatorcontrib><creatorcontrib>Corrigan, Adam M.</creatorcontrib><creatorcontrib>Chubb, Jonathan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tunnacliffe, Edward</au><au>Corrigan, Adam M.</au><au>Chubb, Jonathan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-08-14</date><risdate>2018</risdate><volume>115</volume><issue>33</issue><spage>8364</spage><epage>8369</epage><pages>8364-8369</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong “bursty” behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30061408</pmid><doi>10.1073/pnas.1800943115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-08, Vol.115 (33), p.8364-8369 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099902 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actin Actins - genetics Amino acid sequence Biological Sciences Bursting strength Cell Line Dictyostelium - genetics Gene Duplication Gene expression Gene Expression Regulation Gene families Genes Genomes Genomics Promoter Regions, Genetic Proteins Regulatory sequences Reproduction (copying) Transcription Transcription, Genetic |
title | Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoter-mediated%20diversification%20of%20transcriptional%20bursting%20dynamics%20following%20gene%20duplication&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tunnacliffe,%20Edward&rft.date=2018-08-14&rft.volume=115&rft.issue=33&rft.spage=8364&rft.epage=8369&rft.pages=8364-8369&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800943115&rft_dat=%3Cjstor_pubme%3E26530244%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097971772&rft_id=info:pmid/30061408&rft_jstor_id=26530244&rfr_iscdi=true |