Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation

Cells in a multicellular organism fulfill specific functions by enacting cell-type-specific programs of gene regulation. Single-cell RNA sequencing technologies have provided a transformative view of cell-type-specific gene expression, the output of cell-type-specific gene regulatory programs. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in genetics 2018-09, Vol.34 (9), p.653-665
Hauptverfasser: Packer, Jonathan, Trapnell, Cole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 9
container_start_page 653
container_title Trends in genetics
container_volume 34
creator Packer, Jonathan
Trapnell, Cole
description Cells in a multicellular organism fulfill specific functions by enacting cell-type-specific programs of gene regulation. Single-cell RNA sequencing technologies have provided a transformative view of cell-type-specific gene expression, the output of cell-type-specific gene regulatory programs. This review discusses new single-cell genomic technologies that complement single-cell RNA sequencing by providing additional readouts of cellular state beyond the transcriptome. We highlight regression models as a simple yet powerful approach to relate gene expression to other aspects of cellular state, and in doing so, gain insights into the biochemical mechanisms that are necessary to produce a given gene expression output. Regression models offer a simple yet powerful framework for integrating single-cell transcriptomic, genetic, and epigenetic data to identify mechanisms of gene regulation. New protocols for CRISPR loss-of-function screens read out gene expression and genetic perturbations in the same single cells. Regressing expression (phenotype) versus genotype can provide insights into gene function and epistasis. Antibodies conjugated to barcoded oligonucleotides have been used to read out gene expression and protein epitope abundance in the same single cells. Regression modeling of such data may facilitate the reconstruction of cell signaling networks. Emerging single-cell ATAC-seq technologies measure chromatin accessibility in single cells and can facilitate the identification of noncoding DNA elements, sequence features, and transcription factors that drive gene expression dynamics.
doi_str_mv 10.1016/j.tig.2018.06.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6097890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952518301082</els_id><sourcerecordid>2070802164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-92d7866abdb47a8f08411dc9a976f2aa5f9435bcdf3e685ca4840e8a92627ecc3</originalsourceid><addsrcrecordid>eNp9kElrHDEQRnVw8Jb8AF-Mjrl0u9SLpLYhYAYvAS_YSc5Co65ua-iRbEk9If8-MuOY5JKTCtWrr4pHyBGDkgHjJ6sy2bGsgMkSeAnAdsh-_pdF11btHjmIcQUArajbXbJX51LIut4nD9-sGycsFjhN9Haeki382pp4Ss8dvXCjdUgHH-gd_qQPs3bJJp3sBumt73GK1A_0CjPziOM85Y53H8mHQU8RP729h-TH5cX3xXVxc3_1dXF-U5iWiVR0VS8k53rZLxuh5QCyYaw3ne4EHyqt26Fr6nZp-qFGLlujG9kASt1VvBJoTH1Ivmxzn-flGnuDLgU9qedg1zr8Ul5b9W_H2Sc1-o3i0AnZQQ74_BYQ_MuMMam1jSZ70A79HFUFAiRUjDcZZVvUBB9jwOF9DQP1ql-tVNavXvUr4CrrzzPHf9_3PvHHfQbOtkD2iBuLQUVj0RnsbUCTVO_tf-J_A8QGmH0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070802164</pqid></control><display><type>article</type><title>Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Packer, Jonathan ; Trapnell, Cole</creator><creatorcontrib>Packer, Jonathan ; Trapnell, Cole</creatorcontrib><description>Cells in a multicellular organism fulfill specific functions by enacting cell-type-specific programs of gene regulation. Single-cell RNA sequencing technologies have provided a transformative view of cell-type-specific gene expression, the output of cell-type-specific gene regulatory programs. This review discusses new single-cell genomic technologies that complement single-cell RNA sequencing by providing additional readouts of cellular state beyond the transcriptome. We highlight regression models as a simple yet powerful approach to relate gene expression to other aspects of cellular state, and in doing so, gain insights into the biochemical mechanisms that are necessary to produce a given gene expression output. Regression models offer a simple yet powerful framework for integrating single-cell transcriptomic, genetic, and epigenetic data to identify mechanisms of gene regulation. New protocols for CRISPR loss-of-function screens read out gene expression and genetic perturbations in the same single cells. Regressing expression (phenotype) versus genotype can provide insights into gene function and epistasis. Antibodies conjugated to barcoded oligonucleotides have been used to read out gene expression and protein epitope abundance in the same single cells. Regression modeling of such data may facilitate the reconstruction of cell signaling networks. Emerging single-cell ATAC-seq technologies measure chromatin accessibility in single cells and can facilitate the identification of noncoding DNA elements, sequence features, and transcription factors that drive gene expression dynamics.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2018.06.001</identifier><identifier>PMID: 30007833</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Epigenomics ; Gene Expression Regulation - genetics ; Genomics ; High-Throughput Nucleotide Sequencing - trends ; Humans ; Single-Cell Analysis - trends ; Transcriptome - genetics</subject><ispartof>Trends in genetics, 2018-09, Vol.34 (9), p.653-665</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-92d7866abdb47a8f08411dc9a976f2aa5f9435bcdf3e685ca4840e8a92627ecc3</citedby><cites>FETCH-LOGICAL-c517t-92d7866abdb47a8f08411dc9a976f2aa5f9435bcdf3e685ca4840e8a92627ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tig.2018.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30007833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Packer, Jonathan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><title>Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>Cells in a multicellular organism fulfill specific functions by enacting cell-type-specific programs of gene regulation. Single-cell RNA sequencing technologies have provided a transformative view of cell-type-specific gene expression, the output of cell-type-specific gene regulatory programs. This review discusses new single-cell genomic technologies that complement single-cell RNA sequencing by providing additional readouts of cellular state beyond the transcriptome. We highlight regression models as a simple yet powerful approach to relate gene expression to other aspects of cellular state, and in doing so, gain insights into the biochemical mechanisms that are necessary to produce a given gene expression output. Regression models offer a simple yet powerful framework for integrating single-cell transcriptomic, genetic, and epigenetic data to identify mechanisms of gene regulation. New protocols for CRISPR loss-of-function screens read out gene expression and genetic perturbations in the same single cells. Regressing expression (phenotype) versus genotype can provide insights into gene function and epistasis. Antibodies conjugated to barcoded oligonucleotides have been used to read out gene expression and protein epitope abundance in the same single cells. Regression modeling of such data may facilitate the reconstruction of cell signaling networks. Emerging single-cell ATAC-seq technologies measure chromatin accessibility in single cells and can facilitate the identification of noncoding DNA elements, sequence features, and transcription factors that drive gene expression dynamics.</description><subject>Epigenomics</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - trends</subject><subject>Humans</subject><subject>Single-Cell Analysis - trends</subject><subject>Transcriptome - genetics</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElrHDEQRnVw8Jb8AF-Mjrl0u9SLpLYhYAYvAS_YSc5Co65ua-iRbEk9If8-MuOY5JKTCtWrr4pHyBGDkgHjJ6sy2bGsgMkSeAnAdsh-_pdF11btHjmIcQUArajbXbJX51LIut4nD9-sGycsFjhN9Haeki382pp4Ss8dvXCjdUgHH-gd_qQPs3bJJp3sBumt73GK1A_0CjPziOM85Y53H8mHQU8RP729h-TH5cX3xXVxc3_1dXF-U5iWiVR0VS8k53rZLxuh5QCyYaw3ne4EHyqt26Fr6nZp-qFGLlujG9kASt1VvBJoTH1Ivmxzn-flGnuDLgU9qedg1zr8Ul5b9W_H2Sc1-o3i0AnZQQ74_BYQ_MuMMam1jSZ70A79HFUFAiRUjDcZZVvUBB9jwOF9DQP1ql-tVNavXvUr4CrrzzPHf9_3PvHHfQbOtkD2iBuLQUVj0RnsbUCTVO_tf-J_A8QGmH0</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Packer, Jonathan</creator><creator>Trapnell, Cole</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation</title><author>Packer, Jonathan ; Trapnell, Cole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-92d7866abdb47a8f08411dc9a976f2aa5f9435bcdf3e685ca4840e8a92627ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Epigenomics</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - trends</topic><topic>Humans</topic><topic>Single-Cell Analysis - trends</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Packer, Jonathan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Packer, Jonathan</au><au>Trapnell, Cole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>34</volume><issue>9</issue><spage>653</spage><epage>665</epage><pages>653-665</pages><issn>0168-9525</issn><abstract>Cells in a multicellular organism fulfill specific functions by enacting cell-type-specific programs of gene regulation. Single-cell RNA sequencing technologies have provided a transformative view of cell-type-specific gene expression, the output of cell-type-specific gene regulatory programs. This review discusses new single-cell genomic technologies that complement single-cell RNA sequencing by providing additional readouts of cellular state beyond the transcriptome. We highlight regression models as a simple yet powerful approach to relate gene expression to other aspects of cellular state, and in doing so, gain insights into the biochemical mechanisms that are necessary to produce a given gene expression output. Regression models offer a simple yet powerful framework for integrating single-cell transcriptomic, genetic, and epigenetic data to identify mechanisms of gene regulation. New protocols for CRISPR loss-of-function screens read out gene expression and genetic perturbations in the same single cells. Regressing expression (phenotype) versus genotype can provide insights into gene function and epistasis. Antibodies conjugated to barcoded oligonucleotides have been used to read out gene expression and protein epitope abundance in the same single cells. Regression modeling of such data may facilitate the reconstruction of cell signaling networks. Emerging single-cell ATAC-seq technologies measure chromatin accessibility in single cells and can facilitate the identification of noncoding DNA elements, sequence features, and transcription factors that drive gene expression dynamics.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30007833</pmid><doi>10.1016/j.tig.2018.06.001</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9525
ispartof Trends in genetics, 2018-09, Vol.34 (9), p.653-665
issn 0168-9525
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6097890
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Epigenomics
Gene Expression Regulation - genetics
Genomics
High-Throughput Nucleotide Sequencing - trends
Humans
Single-Cell Analysis - trends
Transcriptome - genetics
title Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Multi-omics:%20An%20Engine%20for%20New%20Quantitative%20Models%20of%20Gene%20Regulation&rft.jtitle=Trends%20in%20genetics&rft.au=Packer,%20Jonathan&rft.date=2018-09-01&rft.volume=34&rft.issue=9&rft.spage=653&rft.epage=665&rft.pages=653-665&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2018.06.001&rft_dat=%3Cproquest_pubme%3E2070802164%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070802164&rft_id=info:pmid/30007833&rft_els_id=S0168952518301082&rfr_iscdi=true