Automated map sharpening by maximization of detail and connectivity
An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso‐contour surface that contains a fixed fraction of the volume of the map, where a map with high le...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2018-06, Vol.74 (6), p.545-559 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559 |
---|---|
container_issue | 6 |
container_start_page | 545 |
container_title | Acta crystallographica. Section D, Biological crystallography. |
container_volume | 74 |
creator | Terwilliger, Thomas C. Sobolev, Oleg V. Afonine, Pavel V. Adams, Paul D. |
description | An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso‐contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso‐contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures in a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map‐sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model with B factors (atomic displacement factors; ADPs) set to zero. This model‐based metric was used to evaluate map sharpening and to evaluate map‐sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.
A procedure for optimizing the sharpening of a map based on maximizing the level of detail and connectivity of the map has been developed and applied to 361 pairs of deposited cryo‐EM maps and associated models. |
doi_str_mv | 10.1107/S2059798318004655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051072283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-d66ce1fd0755c9a1890e35f7286300372fdb07d8fce1aa3fa37471ec2af2d5663</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS1URKuSD8AFrdoLl8DYXtu7l0pRKG2kShyAAyfL8Z_G1a4d1t5A-ulxSKhaeuBka_yb55n3EHqD4T3GID58IcBa0TYUNwA1Z-wFOtmVprva0aP7MZqkdAcAmFOBaf0KHZO2EQSAnaD5bMyxV9maqlfrKq3UsLbBh9tquS2VX7739yr7GKroKmOz8l2lgql0DMHq7Dc-b1-jl051yU4O5yn69uny6_x6evP5ajGf3Uw1E0CmhnNtsTMgGNOtwk0LljInSMMpABXEmSUI07hCKUWdoqIW2GqiHDGMc3qKLva663HZW6NtyIPq5HrwvRq2Miovn74Ev5K3cSM5tLxuoQic7QViyl4m7bPVq8MmEtdUCEwK9O7wyxB_jDZl2fukbdepYOOYZPG12E9IQwt6_g96F8chFA92VOF484fCe0oPMaXBuoeJMchdlPJZlKXn7eNVHzr-BleAdg_89J3d_l9Rzr5_JIt5GZ3Q33JxqLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050516883</pqid></control><display><type>article</type><title>Automated map sharpening by maximization of detail and connectivity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Terwilliger, Thomas C. ; Sobolev, Oleg V. ; Afonine, Pavel V. ; Adams, Paul D.</creator><creatorcontrib>Terwilliger, Thomas C. ; Sobolev, Oleg V. ; Afonine, Pavel V. ; Adams, Paul D. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso‐contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso‐contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures in a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map‐sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model with B factors (atomic displacement factors; ADPs) set to zero. This model‐based metric was used to evaluate map sharpening and to evaluate map‐sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.
A procedure for optimizing the sharpening of a map based on maximizing the level of detail and connectivity of the map has been developed and applied to 361 pairs of deposited cryo‐EM maps and associated models.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798318004655</identifier><identifier>PMID: 29872005</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; Animals ; Antigens, Bacterial - chemistry ; Automation ; Bacterial Proteins - chemistry ; Bacterial Toxins - chemistry ; BASIC BIOLOGICAL SCIENCES ; Biological Science ; Connectivity ; Connexins - chemistry ; Contours ; Cryoelectron Microscopy - methods ; cryo‐electron microscopy ; Crystallography, X-Ray - methods ; Fourier Analysis ; Humans ; map interpretation ; map sharpening ; MATHEMATICS AND COMPUTING ; Models, Molecular ; Optimization ; Research Papers ; Shape ; Sharpening ; Surface area ; TRPV Cation Channels - chemistry ; X‐ray crystallography</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2018-06, Vol.74 (6), p.545-559</ispartof><rights>Terwilliger et al. 2018</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 2018</rights><rights>Terwilliger et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-d66ce1fd0755c9a1890e35f7286300372fdb07d8fce1aa3fa37471ec2af2d5663</citedby><cites>FETCH-LOGICAL-c5702-d66ce1fd0755c9a1890e35f7286300372fdb07d8fce1aa3fa37471ec2af2d5663</cites><orcidid>0000-0002-5052-991X ; 000000025052991X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2059798318004655$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2059798318004655$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29872005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1437712$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Terwilliger, Thomas C.</creatorcontrib><creatorcontrib>Sobolev, Oleg V.</creatorcontrib><creatorcontrib>Afonine, Pavel V.</creatorcontrib><creatorcontrib>Adams, Paul D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Automated map sharpening by maximization of detail and connectivity</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso‐contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso‐contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures in a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map‐sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model with B factors (atomic displacement factors; ADPs) set to zero. This model‐based metric was used to evaluate map sharpening and to evaluate map‐sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.
A procedure for optimizing the sharpening of a map based on maximizing the level of detail and connectivity of the map has been developed and applied to 361 pairs of deposited cryo‐EM maps and associated models.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Automation</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Toxins - chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Science</subject><subject>Connectivity</subject><subject>Connexins - chemistry</subject><subject>Contours</subject><subject>Cryoelectron Microscopy - methods</subject><subject>cryo‐electron microscopy</subject><subject>Crystallography, X-Ray - methods</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>map interpretation</subject><subject>map sharpening</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Models, Molecular</subject><subject>Optimization</subject><subject>Research Papers</subject><subject>Shape</subject><subject>Sharpening</subject><subject>Surface area</subject><subject>TRPV Cation Channels - chemistry</subject><subject>X‐ray crystallography</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9vEzEQxS1URKuSD8AFrdoLl8DYXtu7l0pRKG2kShyAAyfL8Z_G1a4d1t5A-ulxSKhaeuBka_yb55n3EHqD4T3GID58IcBa0TYUNwA1Z-wFOtmVprva0aP7MZqkdAcAmFOBaf0KHZO2EQSAnaD5bMyxV9maqlfrKq3UsLbBh9tquS2VX7739yr7GKroKmOz8l2lgql0DMHq7Dc-b1-jl051yU4O5yn69uny6_x6evP5ajGf3Uw1E0CmhnNtsTMgGNOtwk0LljInSMMpABXEmSUI07hCKUWdoqIW2GqiHDGMc3qKLva663HZW6NtyIPq5HrwvRq2Miovn74Ev5K3cSM5tLxuoQic7QViyl4m7bPVq8MmEtdUCEwK9O7wyxB_jDZl2fukbdepYOOYZPG12E9IQwt6_g96F8chFA92VOF484fCe0oPMaXBuoeJMchdlPJZlKXn7eNVHzr-BleAdg_89J3d_l9Rzr5_JIt5GZ3Q33JxqLo</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Terwilliger, Thomas C.</creator><creator>Sobolev, Oleg V.</creator><creator>Afonine, Pavel V.</creator><creator>Adams, Paul D.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><general>IUCr</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5052-991X</orcidid><orcidid>https://orcid.org/000000025052991X</orcidid></search><sort><creationdate>201806</creationdate><title>Automated map sharpening by maximization of detail and connectivity</title><author>Terwilliger, Thomas C. ; Sobolev, Oleg V. ; Afonine, Pavel V. ; Adams, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-d66ce1fd0755c9a1890e35f7286300372fdb07d8fce1aa3fa37471ec2af2d5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Automation</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Toxins - chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Science</topic><topic>Connectivity</topic><topic>Connexins - chemistry</topic><topic>Contours</topic><topic>Cryoelectron Microscopy - methods</topic><topic>cryo‐electron microscopy</topic><topic>Crystallography, X-Ray - methods</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>map interpretation</topic><topic>map sharpening</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Models, Molecular</topic><topic>Optimization</topic><topic>Research Papers</topic><topic>Shape</topic><topic>Sharpening</topic><topic>Surface area</topic><topic>TRPV Cation Channels - chemistry</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terwilliger, Thomas C.</creatorcontrib><creatorcontrib>Sobolev, Oleg V.</creatorcontrib><creatorcontrib>Afonine, Pavel V.</creatorcontrib><creatorcontrib>Adams, Paul D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terwilliger, Thomas C.</au><au>Sobolev, Oleg V.</au><au>Afonine, Pavel V.</au><au>Adams, Paul D.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated map sharpening by maximization of detail and connectivity</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2018-06</date><risdate>2018</risdate><volume>74</volume><issue>6</issue><spage>545</spage><epage>559</epage><pages>545-559</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso‐contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso‐contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures in a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map‐sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model with B factors (atomic displacement factors; ADPs) set to zero. This model‐based metric was used to evaluate map sharpening and to evaluate map‐sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.
A procedure for optimizing the sharpening of a map based on maximizing the level of detail and connectivity of the map has been developed and applied to 361 pairs of deposited cryo‐EM maps and associated models.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>29872005</pmid><doi>10.1107/S2059798318004655</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5052-991X</orcidid><orcidid>https://orcid.org/000000025052991X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7983 |
ispartof | Acta crystallographica. Section D, Biological crystallography., 2018-06, Vol.74 (6), p.545-559 |
issn | 2059-7983 0907-4449 2059-7983 1399-0047 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096490 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Algorithms Animals Antigens, Bacterial - chemistry Automation Bacterial Proteins - chemistry Bacterial Toxins - chemistry BASIC BIOLOGICAL SCIENCES Biological Science Connectivity Connexins - chemistry Contours Cryoelectron Microscopy - methods cryo‐electron microscopy Crystallography, X-Ray - methods Fourier Analysis Humans map interpretation map sharpening MATHEMATICS AND COMPUTING Models, Molecular Optimization Research Papers Shape Sharpening Surface area TRPV Cation Channels - chemistry X‐ray crystallography |
title | Automated map sharpening by maximization of detail and connectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20map%20sharpening%20by%20maximization%20of%20detail%20and%20connectivity&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Terwilliger,%20Thomas%20C.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-06&rft.volume=74&rft.issue=6&rft.spage=545&rft.epage=559&rft.pages=545-559&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798318004655&rft_dat=%3Cproquest_pubme%3E2051072283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050516883&rft_id=info:pmid/29872005&rfr_iscdi=true |