Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation sp...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2018-08, Vol.50 (8), p.1171-1179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 8 |
container_start_page | 1171 |
container_title | Nature genetics |
container_volume | 50 |
creator | Zhou, Jian Theesfeld, Chandra L. Yao, Kevin Chen, Kathleen M. Wong, Aaron K. Troyanskaya, Olga G. |
description | Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk.
ExPecto is a deep learning–based framework that can predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone. ExPecto can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant. |
doi_str_mv | 10.1038/s41588-018-0160-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6094955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572749704</galeid><sourcerecordid>A572749704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-89e4108b12fdf1f876f90d84c9fe24ccfe458852681705ab0c35ee724c1d92c63</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhhtR3A_9AV4k4MlDa6o7SacvwrK6urCw4Nc1pNOVNutMMiY9y_rvrWbW0TkIHkKK1JOXqpe3qp4BfwW81a-LAKl1zWE5itfqQXUMUqgaOtAPqeYKasFbdVSdlHLDOQjB9ePqqKWyBc2PK_cWccNWaHMMcWIFf2wxOqwHW3BkdmAhhjkktsk4BkdVZMmzW5uDjTND79HNhdEr3hFSygLYOLIxFCQJlkP5_qR65O2q4NP7-7T6cvHu8_mH-ur6_eX52VXtVNvMte5RANcDNH704HWnfM9HLVzvsRHOeRS0rWyUho5LO3DXSsSOWjD2DWmcVm92upvtsMbRYZyzXZlNDmubf5pkgznsxPDNTOnWKN6LXkoSeHEvkBP5UGZzk7Y50symAaDZhCQ399RkV2hC9InE3DoUZ85k13Si77gg6uUB5VKc8W6e7LYUc_np4_-z118PWdixLqdSMvr9fsDNkgqzS4WhVJglFWYx5vnfxux__I4BAc0OKNSKE-Y_i_9b9RdvF8EI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111084540</pqid></control><display><type>article</type><title>Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhou, Jian ; Theesfeld, Chandra L. ; Yao, Kevin ; Chen, Kathleen M. ; Wong, Aaron K. ; Troyanskaya, Olga G.</creator><creatorcontrib>Zhou, Jian ; Theesfeld, Chandra L. ; Yao, Kevin ; Chen, Kathleen M. ; Wong, Aaron K. ; Troyanskaya, Olga G.</creatorcontrib><description>Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk.
ExPecto is a deep learning–based framework that can predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone. ExPecto can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-018-0160-6</identifier><identifier>PMID: 30013180</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/44 ; 45 ; 631/208 ; 631/208/212 ; Agriculture ; Algorithms ; Analysis ; Animal Genetics and Genomics ; Base sequence ; Biochemistry ; Biological evolution ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Computer applications ; Computer Simulation ; Consortia ; Crohn's disease ; Deep Learning ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA-directed RNA polymerase ; Evolutionary biology ; Gene Expression ; Gene Function ; Genes ; Genetic Predisposition to Disease ; Genetic research ; Genetic variation ; Genetics ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Health risk assessment ; Health risks ; Hepatitis ; Human Genetics ; Humans ; Inflammatory bowel disease ; Medical research ; Models, Genetic ; Molecular dynamics ; Mutation ; Neural networks ; Nucleotide sequence ; Polymorphism, Single Nucleotide ; Precision medicine ; Promoter Regions, Genetic ; Quantitative genetics ; Quantitative Trait Loci - genetics ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; Saturation mutagenesis ; Transcription ; Transcription (Genetics)</subject><ispartof>Nature genetics, 2018-08, Vol.50 (8), p.1171-1179</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-89e4108b12fdf1f876f90d84c9fe24ccfe458852681705ab0c35ee724c1d92c63</citedby><cites>FETCH-LOGICAL-c632t-89e4108b12fdf1f876f90d84c9fe24ccfe458852681705ab0c35ee724c1d92c63</cites><orcidid>0000-0002-8379-6600 ; 0000-0002-5676-5737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-018-0160-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-018-0160-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30013180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Theesfeld, Chandra L.</creatorcontrib><creatorcontrib>Yao, Kevin</creatorcontrib><creatorcontrib>Chen, Kathleen M.</creatorcontrib><creatorcontrib>Wong, Aaron K.</creatorcontrib><creatorcontrib>Troyanskaya, Olga G.</creatorcontrib><title>Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk.
ExPecto is a deep learning–based framework that can predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone. ExPecto can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant.</description><subject>13/106</subject><subject>13/44</subject><subject>45</subject><subject>631/208</subject><subject>631/208/212</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Base sequence</subject><subject>Biochemistry</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Consortia</subject><subject>Crohn's disease</subject><subject>Deep Learning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA-directed RNA polymerase</subject><subject>Evolutionary biology</subject><subject>Gene Expression</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic research</subject><subject>Genetic variation</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Hepatitis</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Inflammatory bowel disease</subject><subject>Medical research</subject><subject>Models, Genetic</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Nucleotide sequence</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Precision medicine</subject><subject>Promoter Regions, Genetic</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>Saturation mutagenesis</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk2LFDEQhhtR3A_9AV4k4MlDa6o7SacvwrK6urCw4Nc1pNOVNutMMiY9y_rvrWbW0TkIHkKK1JOXqpe3qp4BfwW81a-LAKl1zWE5itfqQXUMUqgaOtAPqeYKasFbdVSdlHLDOQjB9ePqqKWyBc2PK_cWccNWaHMMcWIFf2wxOqwHW3BkdmAhhjkktsk4BkdVZMmzW5uDjTND79HNhdEr3hFSygLYOLIxFCQJlkP5_qR65O2q4NP7-7T6cvHu8_mH-ur6_eX52VXtVNvMte5RANcDNH704HWnfM9HLVzvsRHOeRS0rWyUho5LO3DXSsSOWjD2DWmcVm92upvtsMbRYZyzXZlNDmubf5pkgznsxPDNTOnWKN6LXkoSeHEvkBP5UGZzk7Y50symAaDZhCQ399RkV2hC9InE3DoUZ85k13Si77gg6uUB5VKc8W6e7LYUc_np4_-z118PWdixLqdSMvr9fsDNkgqzS4WhVJglFWYx5vnfxux__I4BAc0OKNSKE-Y_i_9b9RdvF8EI</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zhou, Jian</creator><creator>Theesfeld, Chandra L.</creator><creator>Yao, Kevin</creator><creator>Chen, Kathleen M.</creator><creator>Wong, Aaron K.</creator><creator>Troyanskaya, Olga G.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8379-6600</orcidid><orcidid>https://orcid.org/0000-0002-5676-5737</orcidid></search><sort><creationdate>20180801</creationdate><title>Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk</title><author>Zhou, Jian ; Theesfeld, Chandra L. ; Yao, Kevin ; Chen, Kathleen M. ; Wong, Aaron K. ; Troyanskaya, Olga G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-89e4108b12fdf1f876f90d84c9fe24ccfe458852681705ab0c35ee724c1d92c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>13/44</topic><topic>45</topic><topic>631/208</topic><topic>631/208/212</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Base sequence</topic><topic>Biochemistry</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Consortia</topic><topic>Crohn's disease</topic><topic>Deep Learning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA-directed RNA polymerase</topic><topic>Evolutionary biology</topic><topic>Gene Expression</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic research</topic><topic>Genetic variation</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Hepatitis</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Inflammatory bowel disease</topic><topic>Medical research</topic><topic>Models, Genetic</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Nucleotide sequence</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Precision medicine</topic><topic>Promoter Regions, Genetic</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>Saturation mutagenesis</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Theesfeld, Chandra L.</creatorcontrib><creatorcontrib>Yao, Kevin</creatorcontrib><creatorcontrib>Chen, Kathleen M.</creatorcontrib><creatorcontrib>Wong, Aaron K.</creatorcontrib><creatorcontrib>Troyanskaya, Olga G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jian</au><au>Theesfeld, Chandra L.</au><au>Yao, Kevin</au><au>Chen, Kathleen M.</au><au>Wong, Aaron K.</au><au>Troyanskaya, Olga G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>50</volume><issue>8</issue><spage>1171</spage><epage>1179</epage><pages>1171-1179</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk.
ExPecto is a deep learning–based framework that can predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone. ExPecto can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30013180</pmid><doi>10.1038/s41588-018-0160-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8379-6600</orcidid><orcidid>https://orcid.org/0000-0002-5676-5737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2018-08, Vol.50 (8), p.1171-1179 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6094955 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/106 13/44 45 631/208 631/208/212 Agriculture Algorithms Analysis Animal Genetics and Genomics Base sequence Biochemistry Biological evolution Biomedical and Life Sciences Biomedicine Cancer Research Computer applications Computer Simulation Consortia Crohn's disease Deep Learning Deoxyribonucleic acid DNA DNA sequencing DNA-directed RNA polymerase Evolutionary biology Gene Expression Gene Function Genes Genetic Predisposition to Disease Genetic research Genetic variation Genetics Genome-wide association studies Genome-Wide Association Study - methods Genomes Genomics Health risk assessment Health risks Hepatitis Human Genetics Humans Inflammatory bowel disease Medical research Models, Genetic Molecular dynamics Mutation Neural networks Nucleotide sequence Polymorphism, Single Nucleotide Precision medicine Promoter Regions, Genetic Quantitative genetics Quantitative Trait Loci - genetics Ribonucleic acid RNA RNA polymerase RNA polymerase II Saturation mutagenesis Transcription Transcription (Genetics) |
title | Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20sequence-based%20ab%20initio%20prediction%20of%20variant%20effects%20on%20expression%20and%20disease%20risk&rft.jtitle=Nature%20genetics&rft.au=Zhou,%20Jian&rft.date=2018-08-01&rft.volume=50&rft.issue=8&rft.spage=1171&rft.epage=1179&rft.pages=1171-1179&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-018-0160-6&rft_dat=%3Cgale_pubme%3EA572749704%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111084540&rft_id=info:pmid/30013180&rft_galeid=A572749704&rfr_iscdi=true |