Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway

Panax notoginseng saponins (PNS), the principal constituents derived from Panax notoginseng, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2018-01, Vol.2018 (2018), p.1-8
Hauptverfasser: Wang, Lihong, Yu, Yongmei, Zheng, Jianlei, Zhao, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2018
container_start_page 1
container_title BioMed research international
container_volume 2018
creator Wang, Lihong
Yu, Yongmei
Zheng, Jianlei
Zhao, Yan
description Panax notoginseng saponins (PNS), the principal constituents derived from Panax notoginseng, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, improvement of blood flow and insulin resistance, and so on. This study was carried out to explore the effects of PNS on macrophage polarization under hyperglycemic conditions. Human acute monocyte leukemia cell line THP-1 cells were induced into macrophages with Phorbol ester (PMA). Macrophages were then divided into five groups as follows: control (5.5mMol/l glucose), hyperglycemia group (15mMol/l glucose), hyperglycemia plus low-dose PNS (20ug/ml), hyperglycemia plus moderate-dose PNS (40ug/ml), and hyperglycemia plus high-dose PNS (60ug/ml). After 48-hour cell culture, the percentages of M1- and M2-polarized macrophages were measured by flow cytometry analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the Ym1 and arginase 1 expression in macrophages. Protein expression of arginase 1, NF-κB p50, p65, and inhibitor of κB (IκB) alpha phosphorylation in macrophages was identified with Western blotting. PNS, especially the high-dose PNS, remarkably increased M2 phenotype ratio in macrophages cultured with hyperglycemia, and the mRNA expression of Ym1 and arginase 1 in macrophages was also upregulated. Meanwhile, PNS remarkably increased the protein expression of arginase 1 and decreased IκB-alpha phosphorylation and subunits of NF-κB p50 and p65 from macrophages in culture medium with hyperglycemia. Taken together, our work demonstrated that PNS promote macrophages to transform M2 phenotype under hyperglycemic conditions through downregulating NF-κB signaling pathway.
doi_str_mv 10.1155/2018/9239354
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6091338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087517237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-de1836ae42e5f59b2d52636e9ea49ee9523a926e2e05c556ec8a28dd8421747f3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EolXpjTOyxAWJhvojduILEqwoRSqwonC2pskk6yprp06y7fLT-BH8JrzssnycmMuMNI9ezbwvIY85e8G5UqeC8fLUCGmkyu-RQyF5nmme8_v7WcoDcjwM1yxVyTUz-iE5kIwrLo04JKs5eLijPoyhdX5A39JL6INPM_2E7dTBiPQ9VDH0C2iRzkMH0X2F0QVPJ19jpOfrHmPbrStcuorOgq_dz-3KAf1wln3_9ppeutZD55L4HMbFLawfkQcNdAMe7_oR-XL25vPsPLv4-Pbd7NVFVuWMj1mNvJQaMBeoGmWuRK2ElhoNQm4QjRISjNAokKlKKY1VCaKs6zIXvMiLRh6Rl1vdfrpaYl2hHyN0to9uCXFtAzj798a7hW3DyiajknVlEni2E4jhZsJhtEs3VNh14DFMgxXMqHRFWbCEPv0HvQ5TTH9vqLJQvBCySNTJlkqWDkPEZn8MZ3aTqd1kaneZJvzJnw_s4V8JJuD5Flg4X8Ot-085TAw28JvmwmjG5Q9NB7UR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087517237</pqid></control><display><type>article</type><title>Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Wang, Lihong ; Yu, Yongmei ; Zheng, Jianlei ; Zhao, Yan</creator><contributor>Zissel, Gernot ; Gernot Zissel</contributor><creatorcontrib>Wang, Lihong ; Yu, Yongmei ; Zheng, Jianlei ; Zhao, Yan ; Zissel, Gernot ; Gernot Zissel</creatorcontrib><description>Panax notoginseng saponins (PNS), the principal constituents derived from Panax notoginseng, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, improvement of blood flow and insulin resistance, and so on. This study was carried out to explore the effects of PNS on macrophage polarization under hyperglycemic conditions. Human acute monocyte leukemia cell line THP-1 cells were induced into macrophages with Phorbol ester (PMA). Macrophages were then divided into five groups as follows: control (5.5mMol/l glucose), hyperglycemia group (15mMol/l glucose), hyperglycemia plus low-dose PNS (20ug/ml), hyperglycemia plus moderate-dose PNS (40ug/ml), and hyperglycemia plus high-dose PNS (60ug/ml). After 48-hour cell culture, the percentages of M1- and M2-polarized macrophages were measured by flow cytometry analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the Ym1 and arginase 1 expression in macrophages. Protein expression of arginase 1, NF-κB p50, p65, and inhibitor of κB (IκB) alpha phosphorylation in macrophages was identified with Western blotting. PNS, especially the high-dose PNS, remarkably increased M2 phenotype ratio in macrophages cultured with hyperglycemia, and the mRNA expression of Ym1 and arginase 1 in macrophages was also upregulated. Meanwhile, PNS remarkably increased the protein expression of arginase 1 and decreased IκB-alpha phosphorylation and subunits of NF-κB p50 and p65 from macrophages in culture medium with hyperglycemia. Taken together, our work demonstrated that PNS promote macrophages to transform M2 phenotype under hyperglycemic conditions through downregulating NF-κB signaling pathway.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2018/9239354</identifier><identifier>PMID: 30151392</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Animals ; Anti-inflammatory agents ; Arginase ; Atherosclerosis ; Blood flow ; Cell culture ; Cholesterol ; Diabetes ; Down-Regulation ; Flow cytometry ; Flow resistance ; Gene expression ; Glucose ; Humans ; Hyperglycemia ; Immunoglobulins ; Inflammation ; Insulin ; Leukemia ; Macrophages ; Macrophages - drug effects ; Mice ; Monocytes ; NF-kappa B - drug effects ; NF-kappa B - physiology ; NF-κB protein ; Oxidative stress ; Panax notoginseng ; Panax notoginseng - chemistry ; Phenotypes ; Phosphorylation ; Plant Extracts - pharmacology ; Platelet aggregation ; Polarization ; Polymerase chain reaction ; Proteins ; Rabbits ; Reverse transcription ; Saponins ; Saponins - pharmacology ; Signal Transduction ; Signaling ; Thrombosis ; Vascular diseases ; Western blotting</subject><ispartof>BioMed research international, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Yan Zhao et al.</rights><rights>Copyright © 2018 Yan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2018 Yan Zhao et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-de1836ae42e5f59b2d52636e9ea49ee9523a926e2e05c556ec8a28dd8421747f3</citedby><cites>FETCH-LOGICAL-c401t-de1836ae42e5f59b2d52636e9ea49ee9523a926e2e05c556ec8a28dd8421747f3</cites><orcidid>0000-0003-2504-8601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30151392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zissel, Gernot</contributor><contributor>Gernot Zissel</contributor><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Yu, Yongmei</creatorcontrib><creatorcontrib>Zheng, Jianlei</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><title>Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Panax notoginseng saponins (PNS), the principal constituents derived from Panax notoginseng, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, improvement of blood flow and insulin resistance, and so on. This study was carried out to explore the effects of PNS on macrophage polarization under hyperglycemic conditions. Human acute monocyte leukemia cell line THP-1 cells were induced into macrophages with Phorbol ester (PMA). Macrophages were then divided into five groups as follows: control (5.5mMol/l glucose), hyperglycemia group (15mMol/l glucose), hyperglycemia plus low-dose PNS (20ug/ml), hyperglycemia plus moderate-dose PNS (40ug/ml), and hyperglycemia plus high-dose PNS (60ug/ml). After 48-hour cell culture, the percentages of M1- and M2-polarized macrophages were measured by flow cytometry analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the Ym1 and arginase 1 expression in macrophages. Protein expression of arginase 1, NF-κB p50, p65, and inhibitor of κB (IκB) alpha phosphorylation in macrophages was identified with Western blotting. PNS, especially the high-dose PNS, remarkably increased M2 phenotype ratio in macrophages cultured with hyperglycemia, and the mRNA expression of Ym1 and arginase 1 in macrophages was also upregulated. Meanwhile, PNS remarkably increased the protein expression of arginase 1 and decreased IκB-alpha phosphorylation and subunits of NF-κB p50 and p65 from macrophages in culture medium with hyperglycemia. Taken together, our work demonstrated that PNS promote macrophages to transform M2 phenotype under hyperglycemic conditions through downregulating NF-κB signaling pathway.</description><subject>Animals</subject><subject>Anti-inflammatory agents</subject><subject>Arginase</subject><subject>Atherosclerosis</subject><subject>Blood flow</subject><subject>Cell culture</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Down-Regulation</subject><subject>Flow cytometry</subject><subject>Flow resistance</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Immunoglobulins</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Leukemia</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Mice</subject><subject>Monocytes</subject><subject>NF-kappa B - drug effects</subject><subject>NF-kappa B - physiology</subject><subject>NF-κB protein</subject><subject>Oxidative stress</subject><subject>Panax notoginseng</subject><subject>Panax notoginseng - chemistry</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Plant Extracts - pharmacology</subject><subject>Platelet aggregation</subject><subject>Polarization</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Reverse transcription</subject><subject>Saponins</subject><subject>Saponins - pharmacology</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Thrombosis</subject><subject>Vascular diseases</subject><subject>Western blotting</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhi0EolXpjTOyxAWJhvojduILEqwoRSqwonC2pskk6yprp06y7fLT-BH8JrzssnycmMuMNI9ezbwvIY85e8G5UqeC8fLUCGmkyu-RQyF5nmme8_v7WcoDcjwM1yxVyTUz-iE5kIwrLo04JKs5eLijPoyhdX5A39JL6INPM_2E7dTBiPQ9VDH0C2iRzkMH0X2F0QVPJ19jpOfrHmPbrStcuorOgq_dz-3KAf1wln3_9ppeutZD55L4HMbFLawfkQcNdAMe7_oR-XL25vPsPLv4-Pbd7NVFVuWMj1mNvJQaMBeoGmWuRK2ElhoNQm4QjRISjNAokKlKKY1VCaKs6zIXvMiLRh6Rl1vdfrpaYl2hHyN0to9uCXFtAzj798a7hW3DyiajknVlEni2E4jhZsJhtEs3VNh14DFMgxXMqHRFWbCEPv0HvQ5TTH9vqLJQvBCySNTJlkqWDkPEZn8MZ3aTqd1kaneZJvzJnw_s4V8JJuD5Flg4X8Ot-085TAw28JvmwmjG5Q9NB7UR</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Lihong</creator><creator>Yu, Yongmei</creator><creator>Zheng, Jianlei</creator><creator>Zhao, Yan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2504-8601</orcidid></search><sort><creationdate>20180101</creationdate><title>Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway</title><author>Wang, Lihong ; Yu, Yongmei ; Zheng, Jianlei ; Zhao, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-de1836ae42e5f59b2d52636e9ea49ee9523a926e2e05c556ec8a28dd8421747f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Anti-inflammatory agents</topic><topic>Arginase</topic><topic>Atherosclerosis</topic><topic>Blood flow</topic><topic>Cell culture</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Down-Regulation</topic><topic>Flow cytometry</topic><topic>Flow resistance</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Immunoglobulins</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Leukemia</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Mice</topic><topic>Monocytes</topic><topic>NF-kappa B - drug effects</topic><topic>NF-kappa B - physiology</topic><topic>NF-κB protein</topic><topic>Oxidative stress</topic><topic>Panax notoginseng</topic><topic>Panax notoginseng - chemistry</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Plant Extracts - pharmacology</topic><topic>Platelet aggregation</topic><topic>Polarization</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Reverse transcription</topic><topic>Saponins</topic><topic>Saponins - pharmacology</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Thrombosis</topic><topic>Vascular diseases</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Yu, Yongmei</creatorcontrib><creatorcontrib>Zheng, Jianlei</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lihong</au><au>Yu, Yongmei</au><au>Zheng, Jianlei</au><au>Zhao, Yan</au><au>Zissel, Gernot</au><au>Gernot Zissel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Panax notoginseng saponins (PNS), the principal constituents derived from Panax notoginseng, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, improvement of blood flow and insulin resistance, and so on. This study was carried out to explore the effects of PNS on macrophage polarization under hyperglycemic conditions. Human acute monocyte leukemia cell line THP-1 cells were induced into macrophages with Phorbol ester (PMA). Macrophages were then divided into five groups as follows: control (5.5mMol/l glucose), hyperglycemia group (15mMol/l glucose), hyperglycemia plus low-dose PNS (20ug/ml), hyperglycemia plus moderate-dose PNS (40ug/ml), and hyperglycemia plus high-dose PNS (60ug/ml). After 48-hour cell culture, the percentages of M1- and M2-polarized macrophages were measured by flow cytometry analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the Ym1 and arginase 1 expression in macrophages. Protein expression of arginase 1, NF-κB p50, p65, and inhibitor of κB (IκB) alpha phosphorylation in macrophages was identified with Western blotting. PNS, especially the high-dose PNS, remarkably increased M2 phenotype ratio in macrophages cultured with hyperglycemia, and the mRNA expression of Ym1 and arginase 1 in macrophages was also upregulated. Meanwhile, PNS remarkably increased the protein expression of arginase 1 and decreased IκB-alpha phosphorylation and subunits of NF-κB p50 and p65 from macrophages in culture medium with hyperglycemia. Taken together, our work demonstrated that PNS promote macrophages to transform M2 phenotype under hyperglycemic conditions through downregulating NF-κB signaling pathway.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30151392</pmid><doi>10.1155/2018/9239354</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2504-8601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2018-01, Vol.2018 (2018), p.1-8
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6091338
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Animals
Anti-inflammatory agents
Arginase
Atherosclerosis
Blood flow
Cell culture
Cholesterol
Diabetes
Down-Regulation
Flow cytometry
Flow resistance
Gene expression
Glucose
Humans
Hyperglycemia
Immunoglobulins
Inflammation
Insulin
Leukemia
Macrophages
Macrophages - drug effects
Mice
Monocytes
NF-kappa B - drug effects
NF-kappa B - physiology
NF-κB protein
Oxidative stress
Panax notoginseng
Panax notoginseng - chemistry
Phenotypes
Phosphorylation
Plant Extracts - pharmacology
Platelet aggregation
Polarization
Polymerase chain reaction
Proteins
Rabbits
Reverse transcription
Saponins
Saponins - pharmacology
Signal Transduction
Signaling
Thrombosis
Vascular diseases
Western blotting
title Panax notoginseng Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-κB Signaling Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Panax%20notoginseng%20Saponins%20Regulate%20Macrophage%20Polarization%20under%20Hyperglycemic%20Condition%20via%20NF-%CE%BAB%20Signaling%20Pathway&rft.jtitle=BioMed%20research%20international&rft.au=Wang,%20Lihong&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2018/9239354&rft_dat=%3Cproquest_pubme%3E2087517237%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087517237&rft_id=info:pmid/30151392&rfr_iscdi=true