Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring
In multivariate recurrent event data regression, observation of recurrent events is usually terminated by other events that are associated with the recurrent event processes, resulting in informative censoring. Additionally, some covariates could be measured with errors. In some applications, an ins...
Gespeichert in:
Veröffentlicht in: | Biometrics 2018-09, Vol.74 (3), p.966-976 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 976 |
---|---|
container_issue | 3 |
container_start_page | 966 |
container_title | Biometrics |
container_volume | 74 |
creator | Yu, Hsiang Cheng, Yu-Jen Wang, Ching-Yun |
description | In multivariate recurrent event data regression, observation of recurrent events is usually terminated by other events that are associated with the recurrent event processes, resulting in informative censoring. Additionally, some covariates could be measured with errors. In some applications, an instrumental variable is observed in a subsample, namely a calibration sample, which can be applied for bias correction. In this article, we develop two non-parametric correction approaches to simultaneously correct for the informative censoring and measurement errors in the analysis of multivariate recurrent event data. A shared frailty model is adopted to characterize the informative censoring and dependence among different types of recurrent events. To adjust for measurement errors, a non-parametric correction method using the calibration sample only is proposed. In the second approach, the information from the whole cohort is incorporated by the generalized method of moments. The proposed methods do not require the Poisson-type assumption for the multivariate recurrent event process and the distributional assumption for the frailty. Moreover, we do not need to impose any distributional assumption on the underlying covariates and measurement error. Both methods perform well, but the second approach improves efficiency. The proposed methods are applied to the Nutritional Prevention of Cancer trial to assess the effect of selenium treatment on the recurrences of basal cell carcinoma and squamous cell carcinoma. |
doi_str_mv | 10.1111/biom.12857 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6089684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45092952</jstor_id><sourcerecordid>45092952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4707-b660c177f248ac7d9f9b33e3566389e64c37280502147e8d1c11b488007ee7383</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq1evCsDvRRhar4kM8lchHatutClIAqeDJnMN90sM5OazGzpvzfbbZfWgzkkhDzfwxteQt4CPYG0PtbO9yfAVCGfkRkUAnIqGH1OZpTSMucCfh2QVzGu07UqKHtJDlglBBSMzsjvJY4r38Ss9SFbTt3oNiY4M2L2He0UAg5jdr7Z7p_NaLIbN66yJZo4Bezv3kJIg2ZossWQFL1JAszmOEQf3HD1mrxoTRfxzf15SH5-Of8x_5ZfXH5dzE8vcisklXldltSClC0TyljZVG1Vc468KEuuKiyF5ZIpmsKDkKgasAC1UIpSiSi54ofk0857PdU9NjZFC6bT18H1Jtxqb5x--jK4lb7yG11SVZVKJMHxvSD4PxPGUfcuWuw6M6CfomaUMgZSMEjo0T_o2k9hSN_TDCBRIHiZqA87ygYfY8B2Hwao3tamt7Xpu9oS_P5x_D360FMCYAfcuA5v_6PSZ4vL5YP03W5mHUcf9jOioBWrCsb_AuZhrAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112211436</pqid></control><display><type>article</type><title>Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring</title><source>MEDLINE</source><source>JSTOR Mathematics and Statistics</source><source>Wiley HSS Collection</source><source>OUP_牛津大学出版社现刊</source><source>JSTOR</source><creator>Yu, Hsiang ; Cheng, Yu-Jen ; Wang, Ching-Yun</creator><creatorcontrib>Yu, Hsiang ; Cheng, Yu-Jen ; Wang, Ching-Yun</creatorcontrib><description>In multivariate recurrent event data regression, observation of recurrent events is usually terminated by other events that are associated with the recurrent event processes, resulting in informative censoring. Additionally, some covariates could be measured with errors. In some applications, an instrumental variable is observed in a subsample, namely a calibration sample, which can be applied for bias correction. In this article, we develop two non-parametric correction approaches to simultaneously correct for the informative censoring and measurement errors in the analysis of multivariate recurrent event data. A shared frailty model is adopted to characterize the informative censoring and dependence among different types of recurrent events. To adjust for measurement errors, a non-parametric correction method using the calibration sample only is proposed. In the second approach, the information from the whole cohort is incorporated by the generalized method of moments. The proposed methods do not require the Poisson-type assumption for the multivariate recurrent event process and the distributional assumption for the frailty. Moreover, we do not need to impose any distributional assumption on the underlying covariates and measurement error. Both methods perform well, but the second approach improves efficiency. The proposed methods are applied to the Nutritional Prevention of Cancer trial to assess the effect of selenium treatment on the recurrences of basal cell carcinoma and squamous cell carcinoma.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12857</identifier><identifier>PMID: 29441520</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Basal cell carcinoma ; BIOMETRIC METHODOLOGY: DISCUSSION PAPER ; Calibration ; Carcinoma, Basal Cell - drug therapy ; Carcinoma, Squamous Cell - drug therapy ; Clinical Trials as Topic ; Dependence ; Economic models ; Error analysis ; Frailty ; Generalized method of moments ; Humans ; Informative censoring ; Instrumental variable ; Measurement error ; Measurement methods ; Method of moments ; Models, Statistical ; Multivariate Analysis ; Multivariate recurrent event data ; Neoplasms - diet therapy ; Neoplasms - prevention & control ; Recurrence ; Regression analysis ; Scientific Experimental Error ; Secondary Prevention - methods ; Selenium ; Selenium - therapeutic use ; Squamous cell carcinoma ; Surrogate covariate</subject><ispartof>Biometrics, 2018-09, Vol.74 (3), p.966-976</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2018, The International Biometric Society</rights><rights>2018, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4707-b660c177f248ac7d9f9b33e3566389e64c37280502147e8d1c11b488007ee7383</citedby><cites>FETCH-LOGICAL-c4707-b660c177f248ac7d9f9b33e3566389e64c37280502147e8d1c11b488007ee7383</cites><orcidid>0000-0001-7496-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45092952$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45092952$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29441520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Hsiang</creatorcontrib><creatorcontrib>Cheng, Yu-Jen</creatorcontrib><creatorcontrib>Wang, Ching-Yun</creatorcontrib><title>Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In multivariate recurrent event data regression, observation of recurrent events is usually terminated by other events that are associated with the recurrent event processes, resulting in informative censoring. Additionally, some covariates could be measured with errors. In some applications, an instrumental variable is observed in a subsample, namely a calibration sample, which can be applied for bias correction. In this article, we develop two non-parametric correction approaches to simultaneously correct for the informative censoring and measurement errors in the analysis of multivariate recurrent event data. A shared frailty model is adopted to characterize the informative censoring and dependence among different types of recurrent events. To adjust for measurement errors, a non-parametric correction method using the calibration sample only is proposed. In the second approach, the information from the whole cohort is incorporated by the generalized method of moments. The proposed methods do not require the Poisson-type assumption for the multivariate recurrent event process and the distributional assumption for the frailty. Moreover, we do not need to impose any distributional assumption on the underlying covariates and measurement error. Both methods perform well, but the second approach improves efficiency. The proposed methods are applied to the Nutritional Prevention of Cancer trial to assess the effect of selenium treatment on the recurrences of basal cell carcinoma and squamous cell carcinoma.</description><subject>Basal cell carcinoma</subject><subject>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</subject><subject>Calibration</subject><subject>Carcinoma, Basal Cell - drug therapy</subject><subject>Carcinoma, Squamous Cell - drug therapy</subject><subject>Clinical Trials as Topic</subject><subject>Dependence</subject><subject>Economic models</subject><subject>Error analysis</subject><subject>Frailty</subject><subject>Generalized method of moments</subject><subject>Humans</subject><subject>Informative censoring</subject><subject>Instrumental variable</subject><subject>Measurement error</subject><subject>Measurement methods</subject><subject>Method of moments</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Multivariate recurrent event data</subject><subject>Neoplasms - diet therapy</subject><subject>Neoplasms - prevention & control</subject><subject>Recurrence</subject><subject>Regression analysis</subject><subject>Scientific Experimental Error</subject><subject>Secondary Prevention - methods</subject><subject>Selenium</subject><subject>Selenium - therapeutic use</subject><subject>Squamous cell carcinoma</subject><subject>Surrogate covariate</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFrFDEYhoModq1evCsDvRRhar4kM8lchHatutClIAqeDJnMN90sM5OazGzpvzfbbZfWgzkkhDzfwxteQt4CPYG0PtbO9yfAVCGfkRkUAnIqGH1OZpTSMucCfh2QVzGu07UqKHtJDlglBBSMzsjvJY4r38Ss9SFbTt3oNiY4M2L2He0UAg5jdr7Z7p_NaLIbN66yJZo4Bezv3kJIg2ZossWQFL1JAszmOEQf3HD1mrxoTRfxzf15SH5-Of8x_5ZfXH5dzE8vcisklXldltSClC0TyljZVG1Vc468KEuuKiyF5ZIpmsKDkKgasAC1UIpSiSi54ofk0857PdU9NjZFC6bT18H1Jtxqb5x--jK4lb7yG11SVZVKJMHxvSD4PxPGUfcuWuw6M6CfomaUMgZSMEjo0T_o2k9hSN_TDCBRIHiZqA87ygYfY8B2Hwao3tamt7Xpu9oS_P5x_D360FMCYAfcuA5v_6PSZ4vL5YP03W5mHUcf9jOioBWrCsb_AuZhrAM</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Yu, Hsiang</creator><creator>Cheng, Yu-Jen</creator><creator>Wang, Ching-Yun</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7496-2825</orcidid></search><sort><creationdate>201809</creationdate><title>Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring</title><author>Yu, Hsiang ; Cheng, Yu-Jen ; Wang, Ching-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4707-b660c177f248ac7d9f9b33e3566389e64c37280502147e8d1c11b488007ee7383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basal cell carcinoma</topic><topic>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</topic><topic>Calibration</topic><topic>Carcinoma, Basal Cell - drug therapy</topic><topic>Carcinoma, Squamous Cell - drug therapy</topic><topic>Clinical Trials as Topic</topic><topic>Dependence</topic><topic>Economic models</topic><topic>Error analysis</topic><topic>Frailty</topic><topic>Generalized method of moments</topic><topic>Humans</topic><topic>Informative censoring</topic><topic>Instrumental variable</topic><topic>Measurement error</topic><topic>Measurement methods</topic><topic>Method of moments</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Multivariate recurrent event data</topic><topic>Neoplasms - diet therapy</topic><topic>Neoplasms - prevention & control</topic><topic>Recurrence</topic><topic>Regression analysis</topic><topic>Scientific Experimental Error</topic><topic>Secondary Prevention - methods</topic><topic>Selenium</topic><topic>Selenium - therapeutic use</topic><topic>Squamous cell carcinoma</topic><topic>Surrogate covariate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hsiang</creatorcontrib><creatorcontrib>Cheng, Yu-Jen</creatorcontrib><creatorcontrib>Wang, Ching-Yun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hsiang</au><au>Cheng, Yu-Jen</au><au>Wang, Ching-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-09</date><risdate>2018</risdate><volume>74</volume><issue>3</issue><spage>966</spage><epage>976</epage><pages>966-976</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>In multivariate recurrent event data regression, observation of recurrent events is usually terminated by other events that are associated with the recurrent event processes, resulting in informative censoring. Additionally, some covariates could be measured with errors. In some applications, an instrumental variable is observed in a subsample, namely a calibration sample, which can be applied for bias correction. In this article, we develop two non-parametric correction approaches to simultaneously correct for the informative censoring and measurement errors in the analysis of multivariate recurrent event data. A shared frailty model is adopted to characterize the informative censoring and dependence among different types of recurrent events. To adjust for measurement errors, a non-parametric correction method using the calibration sample only is proposed. In the second approach, the information from the whole cohort is incorporated by the generalized method of moments. The proposed methods do not require the Poisson-type assumption for the multivariate recurrent event process and the distributional assumption for the frailty. Moreover, we do not need to impose any distributional assumption on the underlying covariates and measurement error. Both methods perform well, but the second approach improves efficiency. The proposed methods are applied to the Nutritional Prevention of Cancer trial to assess the effect of selenium treatment on the recurrences of basal cell carcinoma and squamous cell carcinoma.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>29441520</pmid><doi>10.1111/biom.12857</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7496-2825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2018-09, Vol.74 (3), p.966-976 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6089684 |
source | MEDLINE; JSTOR Mathematics and Statistics; Wiley HSS Collection; OUP_牛津大学出版社现刊; JSTOR |
subjects | Basal cell carcinoma BIOMETRIC METHODOLOGY: DISCUSSION PAPER Calibration Carcinoma, Basal Cell - drug therapy Carcinoma, Squamous Cell - drug therapy Clinical Trials as Topic Dependence Economic models Error analysis Frailty Generalized method of moments Humans Informative censoring Instrumental variable Measurement error Measurement methods Method of moments Models, Statistical Multivariate Analysis Multivariate recurrent event data Neoplasms - diet therapy Neoplasms - prevention & control Recurrence Regression analysis Scientific Experimental Error Secondary Prevention - methods Selenium Selenium - therapeutic use Squamous cell carcinoma Surrogate covariate |
title | Methods for Multivariate Recurrent Event Data with Measurement Error and Informative Censoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Multivariate%20Recurrent%20Event%20Data%20with%20Measurement%20Error%20and%20Informative%20Censoring&rft.jtitle=Biometrics&rft.au=Yu,%20Hsiang&rft.date=2018-09&rft.volume=74&rft.issue=3&rft.spage=966&rft.epage=976&rft.pages=966-976&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12857&rft_dat=%3Cjstor_pubme%3E45092952%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112211436&rft_id=info:pmid/29441520&rft_jstor_id=45092952&rfr_iscdi=true |