The structural and biochemical foundations of thiamin biosynthesis
Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of...
Gespeichert in:
Veröffentlicht in: | Annual review of biochemistry 2009-01, Vol.78 (1), p.569-603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 1 |
container_start_page | 569 |
container_title | Annual review of biochemistry |
container_volume | 78 |
creator | Jurgenson, Christopher T Begley, Tadhg P Ealick, Steven E |
description | Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway. |
doi_str_mv | 10.1146/annurev.biochem.78.072407.102340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67317110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a597t-1ee6f5e49d5abb681db9ab56142c15d75a8fb01ea16ba098c8f5639d57690a4b3</originalsourceid><addsrcrecordid>eNpdkUtP3TAQRi3UCi60fwFFXVTdJJ1J_NxUpYhHJSQ2sLbsxCFGNzbYCRL_vrm6USldWeM5OpqZj5BvCBUi5d9NCHNyL5X1sR3cWAlZgagpiAqhbigckA0yykrKQH0gGwDOS7r8HJHjnB8BoFG0PiRHqBoqmZAb8utucEWe0txOczLbwoSuWO2-Xeo-zqEzk48hF7EvpsGb0Ycdkl_DNLjs8yfysTfb7D6v7wm5v7y4O78ub26vfp-f3ZSGKTGV6BzvmaOqY8ZaLrGzyljGkdYtsk4wI3sL6Axya0DJVvaMNwstuAJDbXNCfuy9T7MdXde6MC0T66fkR5NedTRev-8EP-iH-KI5CElrWARfV0GKz7PLkx59bt12a4KLc9ZcNCgQd-CX_8DHOKewLKfruuEKudhBP_dQm2LOyfV_J0HQu7T0mpZe76mF1Pu09D6tRXH670ZvgjWe5g_UiZhi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223691670</pqid></control><display><type>article</type><title>The structural and biochemical foundations of thiamin biosynthesis</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Jurgenson, Christopher T ; Begley, Tadhg P ; Ealick, Steven E</creator><creatorcontrib>Jurgenson, Christopher T ; Begley, Tadhg P ; Ealick, Steven E</creatorcontrib><description>Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.</description><identifier>ISSN: 0066-4154</identifier><identifier>EISSN: 1545-4509</identifier><identifier>DOI: 10.1146/annurev.biochem.78.072407.102340</identifier><identifier>PMID: 19348578</identifier><identifier>CODEN: ARBOAW</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Animals ; Biochemistry ; Biosynthesis ; Eukaryotes ; Eukaryotic Cells - metabolism ; Fungi - metabolism ; Genes ; Genetics ; Humans ; Phosphates ; Plants - metabolism ; Prokaryotic Cells - metabolism ; Pyrimidines - chemistry ; Thiamine - biosynthesis ; Thiamine - chemistry ; Thiazoles - chemistry ; Vitamin B ; Yeasts</subject><ispartof>Annual review of biochemistry, 2009-01, Vol.78 (1), p.569-603</ispartof><rights>Copyright Annual Reviews, Inc. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a597t-1ee6f5e49d5abb681db9ab56142c15d75a8fb01ea16ba098c8f5639d57690a4b3</citedby><cites>FETCH-LOGICAL-a597t-1ee6f5e49d5abb681db9ab56142c15d75a8fb01ea16ba098c8f5639d57690a4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4167,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19348578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurgenson, Christopher T</creatorcontrib><creatorcontrib>Begley, Tadhg P</creatorcontrib><creatorcontrib>Ealick, Steven E</creatorcontrib><title>The structural and biochemical foundations of thiamin biosynthesis</title><title>Annual review of biochemistry</title><addtitle>Annu Rev Biochem</addtitle><description>Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Eukaryotes</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Fungi - metabolism</subject><subject>Genes</subject><subject>Genetics</subject><subject>Humans</subject><subject>Phosphates</subject><subject>Plants - metabolism</subject><subject>Prokaryotic Cells - metabolism</subject><subject>Pyrimidines - chemistry</subject><subject>Thiamine - biosynthesis</subject><subject>Thiamine - chemistry</subject><subject>Thiazoles - chemistry</subject><subject>Vitamin B</subject><subject>Yeasts</subject><issn>0066-4154</issn><issn>1545-4509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3TAQRi3UCi60fwFFXVTdJJ1J_NxUpYhHJSQ2sLbsxCFGNzbYCRL_vrm6USldWeM5OpqZj5BvCBUi5d9NCHNyL5X1sR3cWAlZgagpiAqhbigckA0yykrKQH0gGwDOS7r8HJHjnB8BoFG0PiRHqBoqmZAb8utucEWe0txOczLbwoSuWO2-Xeo-zqEzk48hF7EvpsGb0Ycdkl_DNLjs8yfysTfb7D6v7wm5v7y4O78ub26vfp-f3ZSGKTGV6BzvmaOqY8ZaLrGzyljGkdYtsk4wI3sL6Axya0DJVvaMNwstuAJDbXNCfuy9T7MdXde6MC0T66fkR5NedTRev-8EP-iH-KI5CElrWARfV0GKz7PLkx59bt12a4KLc9ZcNCgQd-CX_8DHOKewLKfruuEKudhBP_dQm2LOyfV_J0HQu7T0mpZe76mF1Pu09D6tRXH670ZvgjWe5g_UiZhi</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Jurgenson, Christopher T</creator><creator>Begley, Tadhg P</creator><creator>Ealick, Steven E</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>The structural and biochemical foundations of thiamin biosynthesis</title><author>Jurgenson, Christopher T ; Begley, Tadhg P ; Ealick, Steven E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a597t-1ee6f5e49d5abb681db9ab56142c15d75a8fb01ea16ba098c8f5639d57690a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Eukaryotes</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Fungi - metabolism</topic><topic>Genes</topic><topic>Genetics</topic><topic>Humans</topic><topic>Phosphates</topic><topic>Plants - metabolism</topic><topic>Prokaryotic Cells - metabolism</topic><topic>Pyrimidines - chemistry</topic><topic>Thiamine - biosynthesis</topic><topic>Thiamine - chemistry</topic><topic>Thiazoles - chemistry</topic><topic>Vitamin B</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurgenson, Christopher T</creatorcontrib><creatorcontrib>Begley, Tadhg P</creatorcontrib><creatorcontrib>Ealick, Steven E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurgenson, Christopher T</au><au>Begley, Tadhg P</au><au>Ealick, Steven E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural and biochemical foundations of thiamin biosynthesis</atitle><jtitle>Annual review of biochemistry</jtitle><addtitle>Annu Rev Biochem</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>78</volume><issue>1</issue><spage>569</spage><epage>603</epage><pages>569-603</pages><issn>0066-4154</issn><eissn>1545-4509</eissn><coden>ARBOAW</coden><abstract>Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>19348578</pmid><doi>10.1146/annurev.biochem.78.072407.102340</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4154 |
ispartof | Annual review of biochemistry, 2009-01, Vol.78 (1), p.569-603 |
issn | 0066-4154 1545-4509 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078420 |
source | Annual Reviews; MEDLINE |
subjects | Animals Biochemistry Biosynthesis Eukaryotes Eukaryotic Cells - metabolism Fungi - metabolism Genes Genetics Humans Phosphates Plants - metabolism Prokaryotic Cells - metabolism Pyrimidines - chemistry Thiamine - biosynthesis Thiamine - chemistry Thiazoles - chemistry Vitamin B Yeasts |
title | The structural and biochemical foundations of thiamin biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20and%20biochemical%20foundations%20of%20thiamin%20biosynthesis&rft.jtitle=Annual%20review%20of%20biochemistry&rft.au=Jurgenson,%20Christopher%20T&rft.date=2009-01-01&rft.volume=78&rft.issue=1&rft.spage=569&rft.epage=603&rft.pages=569-603&rft.issn=0066-4154&rft.eissn=1545-4509&rft.coden=ARBOAW&rft_id=info:doi/10.1146/annurev.biochem.78.072407.102340&rft_dat=%3Cproquest_pubme%3E67317110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223691670&rft_id=info:pmid/19348578&rfr_iscdi=true |