Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth

Amino acid transporters alanine-serine-cysteine transporter 2 (ASCT2) and L-Type Amino Acid Transporter 1 (LAT1) are coordinately enhanced in human cancers where among other roles, they are thought to drive mechanistic target-of-rapamycin (mTOR) growth signaling. To assess ASCT2 and LAT1 as therapeu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2018-07, Vol.19 (7), p.2093
Hauptverfasser: Bothwell, Paige J, Kron, Clare D, Wittke, Evan F, Czerniak, Bradley N, Bode, Barrie P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2093
container_title International journal of molecular sciences
container_volume 19
creator Bothwell, Paige J
Kron, Clare D
Wittke, Evan F
Czerniak, Bradley N
Bode, Barrie P
description Amino acid transporters alanine-serine-cysteine transporter 2 (ASCT2) and L-Type Amino Acid Transporter 1 (LAT1) are coordinately enhanced in human cancers where among other roles, they are thought to drive mechanistic target-of-rapamycin (mTOR) growth signaling. To assess ASCT2 and LAT1 as therapeutic targets, nine unique short hairpin RNA (shRNA) vectors were used to stably suppress transporter expression in human epithelial (Hep3B) and mesenchymal (SK-Hep1) hepatocellular carcinoma (HCC) cell lines. In addition, six unique CRISPR-Cas9 vectors were used to edit the ASCT2 ( ) and LAT1 ( ) genes in epithelial (HUH7) and mesenchymal (SK-Hep1) HCC cells. Both approaches successfully diminished glutamine (ASCT2) and leucine (LAT1) initial-rate transport proportional to transporter protein suppression. In spite of profoundly reduced glutamine or leucine transport (up to 90%), transporter suppression or knockout failed to substantially affect cellular proliferation or basal and amino acid-stimulated mTORC1 growth signaling in either HCC cell type. Only LAT1 knockout in HUH7 slightly reduced growth rate. However, intracellular accumulation of radiolabeled glutamine and leucine over longer time periods largely recovered to control levels in ASCT2 and LAT1 knockout cells, respectively, which partially explains the lack of an impaired growth phenotype. These data collectively establish that in an in vitro context, human epithelial and mesenchymal HCC cell lines adapt to ASCT2 or LAT1 knockout. These results comport with an emerging model of amino acid exchangers like ASCT2 and LAT1 as "harmonizers", not drivers, of amino acid accumulation and signaling, despite their long-established dominant role in initial-rate amino acid transport.
doi_str_mv 10.3390/ijms19072093
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6073291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073338020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1efe7f32bf8f4f05418b74827b492aa0a6986c076ff055aeb45c9920725709a03</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhS0EIgvcOCNLXDgwUF568QVpNMomBnHIcLbcHjvtodtubHdQbvz0eEiIBk5VVn16Vc8PoTcEPjIm4JPbjYkIaCgI9gwdE07pAqBunh_0R-gkpR0AZbQSL9ERK63gLRyj3xsVb0w2W3w9T1M0KbngsfJb_MUH_SPMGQeLl9erDcUh4vVyQ7Dz-GxyuTeDU8Mf9qtJxuv-bizvy3lUHq_drYl4pbzeFzMMCZ8rN-Ac8JXvXecyvojhV-5foRdWDcm8fqyn6Pv52WZ1uVh_u7haLdcLzQnNC2KsaSyjnW0tt1Bx0nYNb2nTcUGVAlWLttbQ1LYMK2U6XmkhaPmWqgGhgJ2izw-609yNZquNz1ENcopuVPFOBuXkvxPvenkTbmUNDaOCFIH3jwIx_JxNynJ0SRdnypswJ1l2McZaoPtd7_5Dd2GOvtiTlIDgFa0JLdSHB0rHkFI09ukYAnIfrTyMtuBvDw08wX-zZPccx57H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109452612</pqid></control><display><type>article</type><title>Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Bothwell, Paige J ; Kron, Clare D ; Wittke, Evan F ; Czerniak, Bradley N ; Bode, Barrie P</creator><creatorcontrib>Bothwell, Paige J ; Kron, Clare D ; Wittke, Evan F ; Czerniak, Bradley N ; Bode, Barrie P</creatorcontrib><description>Amino acid transporters alanine-serine-cysteine transporter 2 (ASCT2) and L-Type Amino Acid Transporter 1 (LAT1) are coordinately enhanced in human cancers where among other roles, they are thought to drive mechanistic target-of-rapamycin (mTOR) growth signaling. To assess ASCT2 and LAT1 as therapeutic targets, nine unique short hairpin RNA (shRNA) vectors were used to stably suppress transporter expression in human epithelial (Hep3B) and mesenchymal (SK-Hep1) hepatocellular carcinoma (HCC) cell lines. In addition, six unique CRISPR-Cas9 vectors were used to edit the ASCT2 ( ) and LAT1 ( ) genes in epithelial (HUH7) and mesenchymal (SK-Hep1) HCC cells. Both approaches successfully diminished glutamine (ASCT2) and leucine (LAT1) initial-rate transport proportional to transporter protein suppression. In spite of profoundly reduced glutamine or leucine transport (up to 90%), transporter suppression or knockout failed to substantially affect cellular proliferation or basal and amino acid-stimulated mTORC1 growth signaling in either HCC cell type. Only LAT1 knockout in HUH7 slightly reduced growth rate. However, intracellular accumulation of radiolabeled glutamine and leucine over longer time periods largely recovered to control levels in ASCT2 and LAT1 knockout cells, respectively, which partially explains the lack of an impaired growth phenotype. These data collectively establish that in an in vitro context, human epithelial and mesenchymal HCC cell lines adapt to ASCT2 or LAT1 knockout. These results comport with an emerging model of amino acid exchangers like ASCT2 and LAT1 as "harmonizers", not drivers, of amino acid accumulation and signaling, despite their long-established dominant role in initial-rate amino acid transport.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms19072093</identifier><identifier>PMID: 30029480</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accumulation ; Alanine ; Amino Acid Transport System ASC - metabolism ; Amino acids ; Amino Acids - metabolism ; Biological Transport - drug effects ; Cell Death - drug effects ; Cell Proliferation - drug effects ; CRISPR ; CRISPR-Cas Systems - genetics ; Epithelium - pathology ; Expression vectors ; Gene expression ; Gene Knockout Techniques ; Glutamine ; Growth rate ; Hepatocellular carcinoma ; Hepatocytes ; Humans ; Large Neutral Amino Acid-Transporter 1 - metabolism ; Leucine ; Liver ; Liver cancer ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mesenchyme ; Mesoderm - pathology ; Mifepristone - pharmacology ; Minor Histocompatibility Antigens - metabolism ; Phenotypes ; Protein transport ; Proteins ; Rapamycin ; RNA, Antisense - metabolism ; RNA, Small Interfering - metabolism ; Serine ; Signal Transduction - drug effects ; Sodium - metabolism ; Therapeutic applications ; TOR protein ; Tumor cell lines</subject><ispartof>International journal of molecular sciences, 2018-07, Vol.19 (7), p.2093</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-1efe7f32bf8f4f05418b74827b492aa0a6986c076ff055aeb45c9920725709a03</citedby><cites>FETCH-LOGICAL-c412t-1efe7f32bf8f4f05418b74827b492aa0a6986c076ff055aeb45c9920725709a03</cites><orcidid>0000-0001-8482-0636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30029480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bothwell, Paige J</creatorcontrib><creatorcontrib>Kron, Clare D</creatorcontrib><creatorcontrib>Wittke, Evan F</creatorcontrib><creatorcontrib>Czerniak, Bradley N</creatorcontrib><creatorcontrib>Bode, Barrie P</creatorcontrib><title>Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Amino acid transporters alanine-serine-cysteine transporter 2 (ASCT2) and L-Type Amino Acid Transporter 1 (LAT1) are coordinately enhanced in human cancers where among other roles, they are thought to drive mechanistic target-of-rapamycin (mTOR) growth signaling. To assess ASCT2 and LAT1 as therapeutic targets, nine unique short hairpin RNA (shRNA) vectors were used to stably suppress transporter expression in human epithelial (Hep3B) and mesenchymal (SK-Hep1) hepatocellular carcinoma (HCC) cell lines. In addition, six unique CRISPR-Cas9 vectors were used to edit the ASCT2 ( ) and LAT1 ( ) genes in epithelial (HUH7) and mesenchymal (SK-Hep1) HCC cells. Both approaches successfully diminished glutamine (ASCT2) and leucine (LAT1) initial-rate transport proportional to transporter protein suppression. In spite of profoundly reduced glutamine or leucine transport (up to 90%), transporter suppression or knockout failed to substantially affect cellular proliferation or basal and amino acid-stimulated mTORC1 growth signaling in either HCC cell type. Only LAT1 knockout in HUH7 slightly reduced growth rate. However, intracellular accumulation of radiolabeled glutamine and leucine over longer time periods largely recovered to control levels in ASCT2 and LAT1 knockout cells, respectively, which partially explains the lack of an impaired growth phenotype. These data collectively establish that in an in vitro context, human epithelial and mesenchymal HCC cell lines adapt to ASCT2 or LAT1 knockout. These results comport with an emerging model of amino acid exchangers like ASCT2 and LAT1 as "harmonizers", not drivers, of amino acid accumulation and signaling, despite their long-established dominant role in initial-rate amino acid transport.</description><subject>Accumulation</subject><subject>Alanine</subject><subject>Amino Acid Transport System ASC - metabolism</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Biological Transport - drug effects</subject><subject>Cell Death - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Epithelium - pathology</subject><subject>Expression vectors</subject><subject>Gene expression</subject><subject>Gene Knockout Techniques</subject><subject>Glutamine</subject><subject>Growth rate</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Large Neutral Amino Acid-Transporter 1 - metabolism</subject><subject>Leucine</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mesenchyme</subject><subject>Mesoderm - pathology</subject><subject>Mifepristone - pharmacology</subject><subject>Minor Histocompatibility Antigens - metabolism</subject><subject>Phenotypes</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>RNA, Antisense - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Serine</subject><subject>Signal Transduction - drug effects</subject><subject>Sodium - metabolism</subject><subject>Therapeutic applications</subject><subject>TOR protein</subject><subject>Tumor cell lines</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUlvFDEQhS0EIgvcOCNLXDgwUF568QVpNMomBnHIcLbcHjvtodtubHdQbvz0eEiIBk5VVn16Vc8PoTcEPjIm4JPbjYkIaCgI9gwdE07pAqBunh_0R-gkpR0AZbQSL9ERK63gLRyj3xsVb0w2W3w9T1M0KbngsfJb_MUH_SPMGQeLl9erDcUh4vVyQ7Dz-GxyuTeDU8Mf9qtJxuv-bizvy3lUHq_drYl4pbzeFzMMCZ8rN-Ac8JXvXecyvojhV-5foRdWDcm8fqyn6Pv52WZ1uVh_u7haLdcLzQnNC2KsaSyjnW0tt1Bx0nYNb2nTcUGVAlWLttbQ1LYMK2U6XmkhaPmWqgGhgJ2izw-609yNZquNz1ENcopuVPFOBuXkvxPvenkTbmUNDaOCFIH3jwIx_JxNynJ0SRdnypswJ1l2McZaoPtd7_5Dd2GOvtiTlIDgFa0JLdSHB0rHkFI09ukYAnIfrTyMtuBvDw08wX-zZPccx57H</recordid><startdate>20180719</startdate><enddate>20180719</enddate><creator>Bothwell, Paige J</creator><creator>Kron, Clare D</creator><creator>Wittke, Evan F</creator><creator>Czerniak, Bradley N</creator><creator>Bode, Barrie P</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8482-0636</orcidid></search><sort><creationdate>20180719</creationdate><title>Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth</title><author>Bothwell, Paige J ; Kron, Clare D ; Wittke, Evan F ; Czerniak, Bradley N ; Bode, Barrie P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1efe7f32bf8f4f05418b74827b492aa0a6986c076ff055aeb45c9920725709a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Alanine</topic><topic>Amino Acid Transport System ASC - metabolism</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Biological Transport - drug effects</topic><topic>Cell Death - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Epithelium - pathology</topic><topic>Expression vectors</topic><topic>Gene expression</topic><topic>Gene Knockout Techniques</topic><topic>Glutamine</topic><topic>Growth rate</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Large Neutral Amino Acid-Transporter 1 - metabolism</topic><topic>Leucine</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mesenchyme</topic><topic>Mesoderm - pathology</topic><topic>Mifepristone - pharmacology</topic><topic>Minor Histocompatibility Antigens - metabolism</topic><topic>Phenotypes</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>RNA, Antisense - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Serine</topic><topic>Signal Transduction - drug effects</topic><topic>Sodium - metabolism</topic><topic>Therapeutic applications</topic><topic>TOR protein</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bothwell, Paige J</creatorcontrib><creatorcontrib>Kron, Clare D</creatorcontrib><creatorcontrib>Wittke, Evan F</creatorcontrib><creatorcontrib>Czerniak, Bradley N</creatorcontrib><creatorcontrib>Bode, Barrie P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bothwell, Paige J</au><au>Kron, Clare D</au><au>Wittke, Evan F</au><au>Czerniak, Bradley N</au><au>Bode, Barrie P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2018-07-19</date><risdate>2018</risdate><volume>19</volume><issue>7</issue><spage>2093</spage><pages>2093-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Amino acid transporters alanine-serine-cysteine transporter 2 (ASCT2) and L-Type Amino Acid Transporter 1 (LAT1) are coordinately enhanced in human cancers where among other roles, they are thought to drive mechanistic target-of-rapamycin (mTOR) growth signaling. To assess ASCT2 and LAT1 as therapeutic targets, nine unique short hairpin RNA (shRNA) vectors were used to stably suppress transporter expression in human epithelial (Hep3B) and mesenchymal (SK-Hep1) hepatocellular carcinoma (HCC) cell lines. In addition, six unique CRISPR-Cas9 vectors were used to edit the ASCT2 ( ) and LAT1 ( ) genes in epithelial (HUH7) and mesenchymal (SK-Hep1) HCC cells. Both approaches successfully diminished glutamine (ASCT2) and leucine (LAT1) initial-rate transport proportional to transporter protein suppression. In spite of profoundly reduced glutamine or leucine transport (up to 90%), transporter suppression or knockout failed to substantially affect cellular proliferation or basal and amino acid-stimulated mTORC1 growth signaling in either HCC cell type. Only LAT1 knockout in HUH7 slightly reduced growth rate. However, intracellular accumulation of radiolabeled glutamine and leucine over longer time periods largely recovered to control levels in ASCT2 and LAT1 knockout cells, respectively, which partially explains the lack of an impaired growth phenotype. These data collectively establish that in an in vitro context, human epithelial and mesenchymal HCC cell lines adapt to ASCT2 or LAT1 knockout. These results comport with an emerging model of amino acid exchangers like ASCT2 and LAT1 as "harmonizers", not drivers, of amino acid accumulation and signaling, despite their long-established dominant role in initial-rate amino acid transport.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30029480</pmid><doi>10.3390/ijms19072093</doi><orcidid>https://orcid.org/0000-0001-8482-0636</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2018-07, Vol.19 (7), p.2093
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6073291
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Accumulation
Alanine
Amino Acid Transport System ASC - metabolism
Amino acids
Amino Acids - metabolism
Biological Transport - drug effects
Cell Death - drug effects
Cell Proliferation - drug effects
CRISPR
CRISPR-Cas Systems - genetics
Epithelium - pathology
Expression vectors
Gene expression
Gene Knockout Techniques
Glutamine
Growth rate
Hepatocellular carcinoma
Hepatocytes
Humans
Large Neutral Amino Acid-Transporter 1 - metabolism
Leucine
Liver
Liver cancer
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mesenchyme
Mesoderm - pathology
Mifepristone - pharmacology
Minor Histocompatibility Antigens - metabolism
Phenotypes
Protein transport
Proteins
Rapamycin
RNA, Antisense - metabolism
RNA, Small Interfering - metabolism
Serine
Signal Transduction - drug effects
Sodium - metabolism
Therapeutic applications
TOR protein
Tumor cell lines
title Targeted Suppression and Knockout of ASCT2 or LAT1 in Epithelial and Mesenchymal Human Liver Cancer Cells Fail to Inhibit Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Suppression%20and%20Knockout%20of%20ASCT2%20or%20LAT1%20in%20Epithelial%20and%20Mesenchymal%20Human%20Liver%20Cancer%20Cells%20Fail%20to%20Inhibit%20Growth&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Bothwell,%20Paige%20J&rft.date=2018-07-19&rft.volume=19&rft.issue=7&rft.spage=2093&rft.pages=2093-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms19072093&rft_dat=%3Cproquest_pubme%3E2073338020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2109452612&rft_id=info:pmid/30029480&rfr_iscdi=true