Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer
Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carc...
Gespeichert in:
Veröffentlicht in: | Surgical oncology 2018-06, Vol.27 (2), p.225-230 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 2 |
container_start_page | 225 |
container_title | Surgical oncology |
container_volume | 27 |
creator | Prince, Andrew C. Moore, Lindsay S. Tipirneni, Kiranya E. Ramesh, Tushar Limdi, Mihir A. Bevans, Stephanie L. Walsh, Erika M. Greene, Benjamin Rosenthal, Eben L. Warram, Jason M. |
description | Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma.
A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization.
Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13).
All three agents appear effective for FGS. |
doi_str_mv | 10.1016/j.suronc.2018.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6072276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960740417300786</els_id><sourcerecordid>2057828481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-bf3d75be24f1256971c95e83e26987af633399c8ffd49c6c563b59486e4fa11b3</originalsourceid><addsrcrecordid>eNp9kUmLFDEAhYMoTjv6D0QCXrxUma2yXAQZxgUGvOg5pLLUpK1O2qSqwX9vyh7H5eAph7z38l4-AJ5j1GOE-et9X9eSk-0JwrJHrEeIPQA7LIXqKCXoIdghxVEnGGIX4Emte4QQFwQ_BhdEKSqwGHbAXZ_MvJol5gRzgPm4RGtmGA9mimmCZvJpqTAmaGCY11x8tT5Z301rdN7BVmH6aThk5-ct4dYbB01yMHn7FVrTxOUpeBTMXP2zu_MSfHl3_fnqQ3fz6f3Hq7c3nWUKL90YqBPD6AkLmAxcCWzV4CX1hCspTOCUUqWsDMExZbkdOB0HxST3LBiMR3oJ3pxzj-t48K41XYqZ9bG0OeW7zibqv29SvNVTPmmOBCGCt4BXdwElf1t9XfQhtsHzbJLPa9UEDQoxziRt0pf_SPd5LanN21RCEskkbip2VtmSay0-3JfBSG8Y9V6fMeoNo0ZMN4zN9uLPIfemX9x-L_XtO0_RF11t3MC4WLxdtMvx_y_8ANoasVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057828481</pqid></control><display><type>article</type><title>Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Prince, Andrew C. ; Moore, Lindsay S. ; Tipirneni, Kiranya E. ; Ramesh, Tushar ; Limdi, Mihir A. ; Bevans, Stephanie L. ; Walsh, Erika M. ; Greene, Benjamin ; Rosenthal, Eben L. ; Warram, Jason M.</creator><creatorcontrib>Prince, Andrew C. ; Moore, Lindsay S. ; Tipirneni, Kiranya E. ; Ramesh, Tushar ; Limdi, Mihir A. ; Bevans, Stephanie L. ; Walsh, Erika M. ; Greene, Benjamin ; Rosenthal, Eben L. ; Warram, Jason M.</creatorcontrib><description>Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma.
A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization.
Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13).
All three agents appear effective for FGS.</description><identifier>ISSN: 0960-7404</identifier><identifier>EISSN: 1879-3320</identifier><identifier>DOI: 10.1016/j.suronc.2018.04.004</identifier><identifier>PMID: 29937175</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Cancer ; Carcinoma, Squamous Cell - diagnostic imaging ; Carcinoma, Squamous Cell - secondary ; Carcinoma, Squamous Cell - surgery ; Contrast agents ; Female ; Fluorescence ; Fluorescence imaging ; Fluorescent Dyes ; Fluorescent indicators ; Head ; Head & neck cancer ; Head and neck cancer ; Head and Neck Neoplasms - diagnostic imaging ; Head and Neck Neoplasms - pathology ; Head and Neck Neoplasms - surgery ; Humans ; I.R. radiation ; Intravenous administration ; Localization ; Lung diseases ; Lymphatic system ; Medical imaging ; Metastases ; Metastasis ; Mice ; Mice, Nude ; Models, Anatomic ; Optical guided surgery ; Optical Imaging - methods ; Probes ; Receptors ; Squamous cell carcinoma ; Surgeons ; Surgery ; Surgery, Computer-Assisted - methods ; Surgical oncology ; Tumor Cells, Cultured ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Surgical oncology, 2018-06, Vol.27 (2), p.225-230</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-bf3d75be24f1256971c95e83e26987af633399c8ffd49c6c563b59486e4fa11b3</citedby><cites>FETCH-LOGICAL-c491t-bf3d75be24f1256971c95e83e26987af633399c8ffd49c6c563b59486e4fa11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.suronc.2018.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29937175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prince, Andrew C.</creatorcontrib><creatorcontrib>Moore, Lindsay S.</creatorcontrib><creatorcontrib>Tipirneni, Kiranya E.</creatorcontrib><creatorcontrib>Ramesh, Tushar</creatorcontrib><creatorcontrib>Limdi, Mihir A.</creatorcontrib><creatorcontrib>Bevans, Stephanie L.</creatorcontrib><creatorcontrib>Walsh, Erika M.</creatorcontrib><creatorcontrib>Greene, Benjamin</creatorcontrib><creatorcontrib>Rosenthal, Eben L.</creatorcontrib><creatorcontrib>Warram, Jason M.</creatorcontrib><title>Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer</title><title>Surgical oncology</title><addtitle>Surg Oncol</addtitle><description>Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma.
A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization.
Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13).
All three agents appear effective for FGS.</description><subject>Animals</subject><subject>Cancer</subject><subject>Carcinoma, Squamous Cell - diagnostic imaging</subject><subject>Carcinoma, Squamous Cell - secondary</subject><subject>Carcinoma, Squamous Cell - surgery</subject><subject>Contrast agents</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Fluorescence imaging</subject><subject>Fluorescent Dyes</subject><subject>Fluorescent indicators</subject><subject>Head</subject><subject>Head & neck cancer</subject><subject>Head and neck cancer</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Head and Neck Neoplasms - surgery</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Intravenous administration</subject><subject>Localization</subject><subject>Lung diseases</subject><subject>Lymphatic system</subject><subject>Medical imaging</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Models, Anatomic</subject><subject>Optical guided surgery</subject><subject>Optical Imaging - methods</subject><subject>Probes</subject><subject>Receptors</subject><subject>Squamous cell carcinoma</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgical oncology</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>0960-7404</issn><issn>1879-3320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUmLFDEAhYMoTjv6D0QCXrxUma2yXAQZxgUGvOg5pLLUpK1O2qSqwX9vyh7H5eAph7z38l4-AJ5j1GOE-et9X9eSk-0JwrJHrEeIPQA7LIXqKCXoIdghxVEnGGIX4Emte4QQFwQ_BhdEKSqwGHbAXZ_MvJol5gRzgPm4RGtmGA9mimmCZvJpqTAmaGCY11x8tT5Z301rdN7BVmH6aThk5-ct4dYbB01yMHn7FVrTxOUpeBTMXP2zu_MSfHl3_fnqQ3fz6f3Hq7c3nWUKL90YqBPD6AkLmAxcCWzV4CX1hCspTOCUUqWsDMExZbkdOB0HxST3LBiMR3oJ3pxzj-t48K41XYqZ9bG0OeW7zibqv29SvNVTPmmOBCGCt4BXdwElf1t9XfQhtsHzbJLPa9UEDQoxziRt0pf_SPd5LanN21RCEskkbip2VtmSay0-3JfBSG8Y9V6fMeoNo0ZMN4zN9uLPIfemX9x-L_XtO0_RF11t3MC4WLxdtMvx_y_8ANoasVs</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Prince, Andrew C.</creator><creator>Moore, Lindsay S.</creator><creator>Tipirneni, Kiranya E.</creator><creator>Ramesh, Tushar</creator><creator>Limdi, Mihir A.</creator><creator>Bevans, Stephanie L.</creator><creator>Walsh, Erika M.</creator><creator>Greene, Benjamin</creator><creator>Rosenthal, Eben L.</creator><creator>Warram, Jason M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180601</creationdate><title>Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer</title><author>Prince, Andrew C. ; Moore, Lindsay S. ; Tipirneni, Kiranya E. ; Ramesh, Tushar ; Limdi, Mihir A. ; Bevans, Stephanie L. ; Walsh, Erika M. ; Greene, Benjamin ; Rosenthal, Eben L. ; Warram, Jason M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-bf3d75be24f1256971c95e83e26987af633399c8ffd49c6c563b59486e4fa11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Carcinoma, Squamous Cell - diagnostic imaging</topic><topic>Carcinoma, Squamous Cell - secondary</topic><topic>Carcinoma, Squamous Cell - surgery</topic><topic>Contrast agents</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Fluorescence imaging</topic><topic>Fluorescent Dyes</topic><topic>Fluorescent indicators</topic><topic>Head</topic><topic>Head & neck cancer</topic><topic>Head and neck cancer</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Head and Neck Neoplasms - surgery</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Intravenous administration</topic><topic>Localization</topic><topic>Lung diseases</topic><topic>Lymphatic system</topic><topic>Medical imaging</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Models, Anatomic</topic><topic>Optical guided surgery</topic><topic>Optical Imaging - methods</topic><topic>Probes</topic><topic>Receptors</topic><topic>Squamous cell carcinoma</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgical oncology</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prince, Andrew C.</creatorcontrib><creatorcontrib>Moore, Lindsay S.</creatorcontrib><creatorcontrib>Tipirneni, Kiranya E.</creatorcontrib><creatorcontrib>Ramesh, Tushar</creatorcontrib><creatorcontrib>Limdi, Mihir A.</creatorcontrib><creatorcontrib>Bevans, Stephanie L.</creatorcontrib><creatorcontrib>Walsh, Erika M.</creatorcontrib><creatorcontrib>Greene, Benjamin</creatorcontrib><creatorcontrib>Rosenthal, Eben L.</creatorcontrib><creatorcontrib>Warram, Jason M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prince, Andrew C.</au><au>Moore, Lindsay S.</au><au>Tipirneni, Kiranya E.</au><au>Ramesh, Tushar</au><au>Limdi, Mihir A.</au><au>Bevans, Stephanie L.</au><au>Walsh, Erika M.</au><au>Greene, Benjamin</au><au>Rosenthal, Eben L.</au><au>Warram, Jason M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer</atitle><jtitle>Surgical oncology</jtitle><addtitle>Surg Oncol</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>225</spage><epage>230</epage><pages>225-230</pages><issn>0960-7404</issn><eissn>1879-3320</eissn><abstract>Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma.
A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization.
Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13).
All three agents appear effective for FGS.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>29937175</pmid><doi>10.1016/j.suronc.2018.04.004</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7404 |
ispartof | Surgical oncology, 2018-06, Vol.27 (2), p.225-230 |
issn | 0960-7404 1879-3320 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6072276 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cancer Carcinoma, Squamous Cell - diagnostic imaging Carcinoma, Squamous Cell - secondary Carcinoma, Squamous Cell - surgery Contrast agents Female Fluorescence Fluorescence imaging Fluorescent Dyes Fluorescent indicators Head Head & neck cancer Head and neck cancer Head and Neck Neoplasms - diagnostic imaging Head and Neck Neoplasms - pathology Head and Neck Neoplasms - surgery Humans I.R. radiation Intravenous administration Localization Lung diseases Lymphatic system Medical imaging Metastases Metastasis Mice Mice, Nude Models, Anatomic Optical guided surgery Optical Imaging - methods Probes Receptors Squamous cell carcinoma Surgeons Surgery Surgery, Computer-Assisted - methods Surgical oncology Tumor Cells, Cultured Tumors Xenografts Xenotransplantation |
title | Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20optical%20imaging%20agents%20in%20a%20fluorescence-guided%20surgical%20model%20of%20head%20and%20neck%20cancer&rft.jtitle=Surgical%20oncology&rft.au=Prince,%20Andrew%20C.&rft.date=2018-06-01&rft.volume=27&rft.issue=2&rft.spage=225&rft.epage=230&rft.pages=225-230&rft.issn=0960-7404&rft.eissn=1879-3320&rft_id=info:doi/10.1016/j.suronc.2018.04.004&rft_dat=%3Cproquest_pubme%3E2057828481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057828481&rft_id=info:pmid/29937175&rft_els_id=S0960740417300786&rfr_iscdi=true |