Macroscopic models for networks of coupled biological oscillators
The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve hundreds of variables in thousands of individual cells resulting in an extremely hi...
Gespeichert in:
Veröffentlicht in: | Science advances 2018-08, Vol.4 (8), p.e1701047-e1701047 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1701047 |
---|---|
container_issue | 8 |
container_start_page | e1701047 |
container_title | Science advances |
container_volume | 4 |
creator | Hannay, Kevin M Forger, Daniel B Booth, Victoria |
description | The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve hundreds of variables in thousands of individual cells resulting in an extremely high-dimensional description of the system. This often contrasts with the low-dimensional dynamics exhibited on the collective or macroscopic scale for these systems. We introduce a macroscopic reduction for networks of coupled oscillators motivated by an elegant structure we find in experimental measurements of circadian protein expression and several mathematical models for coupled biological oscillators. The observed structure in the collective amplitude of the oscillator population differs from the well-known Ott-Antonsen ansatz, but its emergence can be characterized through a simple argument depending only on general phase-locking behavior in coupled oscillator systems. We further demonstrate its emergence in networks of noisy heterogeneous oscillators with complex network connectivity. Applying this structure, we derive low-dimensional macroscopic models for oscillator population activity. This approach allows for the incorporation of cellular-level experimental data into the macroscopic model whose parameters and variables can then be directly associated with tissue- or organism-level properties, thereby elucidating the core properties driving the collective behavior of the system. |
doi_str_mv | 10.1126/sciadv.1701047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6070363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084915810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-fac12c26e73ffe0ddd3dcf0dd52670cf6972d61aa08f304a4d862d8537f952af3</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EolXpyogysqSc7dhJFqSq4ksqYoHZcv1RDEkc7KSI_55ULVWZ7qR7793dD6FLDDOMCb-Jykm9meEcMGT5CRoTmrOUsKw4PepHaBrjBwDgjHOGy3M0ogAFZSUfo_mzVMFH5VunktprU8XE-pA0pvv24TMm3ibK921ldLJyvvJrp2SVDA5XVbLzIV6gMyuraKb7OkFv93evi8d0-fLwtJgvU5Ux3qVWKkwU4San1hrQWlOt7FAZ4Tkoy8ucaI6lhMJSyGSmC050wWhuS0akpRN0u8tt-1VttDJNF2Ql2uBqGX6El078nzTuXaz9RnDIgXI6BFzvA4L_6k3sRO2iMsMbjfF9FASKrMSswDBIZzvplk0Mxh7WYBBb9GKHXuzRD4ar4-MO8j_Q9Bcl14J_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084915810</pqid></control><display><type>article</type><title>Macroscopic models for networks of coupled biological oscillators</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hannay, Kevin M ; Forger, Daniel B ; Booth, Victoria</creator><creatorcontrib>Hannay, Kevin M ; Forger, Daniel B ; Booth, Victoria</creatorcontrib><description>The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve hundreds of variables in thousands of individual cells resulting in an extremely high-dimensional description of the system. This often contrasts with the low-dimensional dynamics exhibited on the collective or macroscopic scale for these systems. We introduce a macroscopic reduction for networks of coupled oscillators motivated by an elegant structure we find in experimental measurements of circadian protein expression and several mathematical models for coupled biological oscillators. The observed structure in the collective amplitude of the oscillator population differs from the well-known Ott-Antonsen ansatz, but its emergence can be characterized through a simple argument depending only on general phase-locking behavior in coupled oscillator systems. We further demonstrate its emergence in networks of noisy heterogeneous oscillators with complex network connectivity. Applying this structure, we derive low-dimensional macroscopic models for oscillator population activity. This approach allows for the incorporation of cellular-level experimental data into the macroscopic model whose parameters and variables can then be directly associated with tissue- or organism-level properties, thereby elucidating the core properties driving the collective behavior of the system.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1701047</identifier><identifier>PMID: 30083596</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Mathematics ; SciAdv r-articles</subject><ispartof>Science advances, 2018-08, Vol.4 (8), p.e1701047-e1701047</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-fac12c26e73ffe0ddd3dcf0dd52670cf6972d61aa08f304a4d862d8537f952af3</citedby><cites>FETCH-LOGICAL-c456t-fac12c26e73ffe0ddd3dcf0dd52670cf6972d61aa08f304a4d862d8537f952af3</cites><orcidid>0000-0003-0193-0245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30083596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannay, Kevin M</creatorcontrib><creatorcontrib>Forger, Daniel B</creatorcontrib><creatorcontrib>Booth, Victoria</creatorcontrib><title>Macroscopic models for networks of coupled biological oscillators</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve hundreds of variables in thousands of individual cells resulting in an extremely high-dimensional description of the system. This often contrasts with the low-dimensional dynamics exhibited on the collective or macroscopic scale for these systems. We introduce a macroscopic reduction for networks of coupled oscillators motivated by an elegant structure we find in experimental measurements of circadian protein expression and several mathematical models for coupled biological oscillators. The observed structure in the collective amplitude of the oscillator population differs from the well-known Ott-Antonsen ansatz, but its emergence can be characterized through a simple argument depending only on general phase-locking behavior in coupled oscillator systems. We further demonstrate its emergence in networks of noisy heterogeneous oscillators with complex network connectivity. Applying this structure, we derive low-dimensional macroscopic models for oscillator population activity. This approach allows for the incorporation of cellular-level experimental data into the macroscopic model whose parameters and variables can then be directly associated with tissue- or organism-level properties, thereby elucidating the core properties driving the collective behavior of the system.</description><subject>Mathematics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EolXpyogysqSc7dhJFqSq4ksqYoHZcv1RDEkc7KSI_55ULVWZ7qR7793dD6FLDDOMCb-Jykm9meEcMGT5CRoTmrOUsKw4PepHaBrjBwDgjHOGy3M0ogAFZSUfo_mzVMFH5VunktprU8XE-pA0pvv24TMm3ibK921ldLJyvvJrp2SVDA5XVbLzIV6gMyuraKb7OkFv93evi8d0-fLwtJgvU5Ux3qVWKkwU4San1hrQWlOt7FAZ4Tkoy8ucaI6lhMJSyGSmC050wWhuS0akpRN0u8tt-1VttDJNF2Ql2uBqGX6El078nzTuXaz9RnDIgXI6BFzvA4L_6k3sRO2iMsMbjfF9FASKrMSswDBIZzvplk0Mxh7WYBBb9GKHXuzRD4ar4-MO8j_Q9Bcl14J_</recordid><startdate>20180803</startdate><enddate>20180803</enddate><creator>Hannay, Kevin M</creator><creator>Forger, Daniel B</creator><creator>Booth, Victoria</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0193-0245</orcidid></search><sort><creationdate>20180803</creationdate><title>Macroscopic models for networks of coupled biological oscillators</title><author>Hannay, Kevin M ; Forger, Daniel B ; Booth, Victoria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-fac12c26e73ffe0ddd3dcf0dd52670cf6972d61aa08f304a4d862d8537f952af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannay, Kevin M</creatorcontrib><creatorcontrib>Forger, Daniel B</creatorcontrib><creatorcontrib>Booth, Victoria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannay, Kevin M</au><au>Forger, Daniel B</au><au>Booth, Victoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic models for networks of coupled biological oscillators</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-08-03</date><risdate>2018</risdate><volume>4</volume><issue>8</issue><spage>e1701047</spage><epage>e1701047</epage><pages>e1701047-e1701047</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve hundreds of variables in thousands of individual cells resulting in an extremely high-dimensional description of the system. This often contrasts with the low-dimensional dynamics exhibited on the collective or macroscopic scale for these systems. We introduce a macroscopic reduction for networks of coupled oscillators motivated by an elegant structure we find in experimental measurements of circadian protein expression and several mathematical models for coupled biological oscillators. The observed structure in the collective amplitude of the oscillator population differs from the well-known Ott-Antonsen ansatz, but its emergence can be characterized through a simple argument depending only on general phase-locking behavior in coupled oscillator systems. We further demonstrate its emergence in networks of noisy heterogeneous oscillators with complex network connectivity. Applying this structure, we derive low-dimensional macroscopic models for oscillator population activity. This approach allows for the incorporation of cellular-level experimental data into the macroscopic model whose parameters and variables can then be directly associated with tissue- or organism-level properties, thereby elucidating the core properties driving the collective behavior of the system.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30083596</pmid><doi>10.1126/sciadv.1701047</doi><orcidid>https://orcid.org/0000-0003-0193-0245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2018-08, Vol.4 (8), p.e1701047-e1701047 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6070363 |
source | DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Mathematics SciAdv r-articles |
title | Macroscopic models for networks of coupled biological oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20models%20for%20networks%20of%20coupled%20biological%20oscillators&rft.jtitle=Science%20advances&rft.au=Hannay,%20Kevin%20M&rft.date=2018-08-03&rft.volume=4&rft.issue=8&rft.spage=e1701047&rft.epage=e1701047&rft.pages=e1701047-e1701047&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1701047&rft_dat=%3Cproquest_pubme%3E2084915810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084915810&rft_id=info:pmid/30083596&rfr_iscdi=true |