Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia

Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2018-07, Vol.99 (2), p.362-375.e4
Hauptverfasser: Rungta, Ravi L., Chaigneau, Emmanuelle, Osmanski, Bruno-Félix, Charpak, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375.e4
container_issue 2
container_start_page 362
container_title Neuron (Cambridge, Mass.)
container_volume 99
creator Rungta, Ravi L.
Chaigneau, Emmanuelle
Osmanski, Bruno-Félix
Charpak, Serge
description Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mice shows that local synaptic activation, measured via oligodendrocyte precursor cell (OPC) Ca2+ signaling, generates a synchronous Ca2+ drop in pericytes and smooth muscle cells (SMCs) enwrapping all upstream vessels feeding the activated synapses. Surprisingly, the onset timing, direction, and amplitude of vessel diameter and blood velocity changes vary dramatically from juxta-synaptic capillaries back to the pial arteriole. These results establish a precise spatial-temporal sequence of vascular changes triggered by neural activity and essential for the interpretation of blood-flow-based imaging techniques such as BOLD-fMRI. •Odor triggers rapid Ca2+ elevations in OPC process that are input specific•All pericyte subtypes and SMCs respond to downstream synaptic activation•Synchronous mural cell activation is associated with heterogeneous local hemodynamics•The arteriole and first-order capillary dilate first and form the primary functional unit Rungta et al. perform in vivo two-photon calcium imaging of neuron, oligodendrocyte precursor cell, pericyte, and smooth muscle cell responses to olfactory sensory stimulation in combination with vessel diameter and red blood cell velocity measurements along the entire vascular arbor.
doi_str_mv 10.1016/j.neuron.2018.06.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731830480X</els_id><sourcerecordid>2059043647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-596d27d8dafc4d81bb20e4f49b35b56316bec1d25d27626caa9dc5ce9826c1c93</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCP0AoEhcuCbbjj_iChFYtRaoEiI-r5dgT6lViBzuptPx6vN1SPg6cZkZ-5vXMvAg9I7ghmIhXuybAmmJoKCZdg0WDCX2ANgQrWTOi1EO0wZ0StaCyPUGnOe8wJowr8hidUKVaSaXcoI9fTbbraFK1jdNs0jJBWMzof5jFx1DFobpYgz3kZqwu9zMkmLyphhSnarmG6tM-mDlDtcTb8oM3T9CjwYwZnt7FM_Tl4vzz9rK-ev_23fbNVW05l0vNlXBUus6ZwTLXkb6nGNjAVN_ynouWiB4scZQXSlBhjVHOcguqKwWxqj1Dr4-689pP4GyZO5lRz8lPJu11NF7__RL8tf4Wb7TAQgnJisDLO4EUv6-QFz35bGEcTYC4Zk0xV5i1gsmCvvgH3cU1lZMcKCmI5J1sC8WOlE0x5wTD_TAE64NneqePnumDZxoLXTwrbc__XOS-6ZdJvzeFcs4bD0ln6yFYcD6BXbSL_v8__ARYHavL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076175873</pqid></control><display><type>article</type><title>Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rungta, Ravi L. ; Chaigneau, Emmanuelle ; Osmanski, Bruno-Félix ; Charpak, Serge</creator><creatorcontrib>Rungta, Ravi L. ; Chaigneau, Emmanuelle ; Osmanski, Bruno-Félix ; Charpak, Serge</creatorcontrib><description>Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mice shows that local synaptic activation, measured via oligodendrocyte precursor cell (OPC) Ca2+ signaling, generates a synchronous Ca2+ drop in pericytes and smooth muscle cells (SMCs) enwrapping all upstream vessels feeding the activated synapses. Surprisingly, the onset timing, direction, and amplitude of vessel diameter and blood velocity changes vary dramatically from juxta-synaptic capillaries back to the pial arteriole. These results establish a precise spatial-temporal sequence of vascular changes triggered by neural activity and essential for the interpretation of blood-flow-based imaging techniques such as BOLD-fMRI. •Odor triggers rapid Ca2+ elevations in OPC process that are input specific•All pericyte subtypes and SMCs respond to downstream synaptic activation•Synchronous mural cell activation is associated with heterogeneous local hemodynamics•The arteriole and first-order capillary dilate first and form the primary functional unit Rungta et al. perform in vivo two-photon calcium imaging of neuron, oligodendrocyte precursor cell, pericyte, and smooth muscle cell responses to olfactory sensory stimulation in combination with vessel diameter and red blood cell velocity measurements along the entire vascular arbor.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.06.012</identifier><identifier>PMID: 29937277</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>anesthetized ; Animals ; astrocyte ; awake ; Blood flow ; blood-brain barrier ; Brain - blood supply ; Brain - physiology ; Brain Chemistry - physiology ; Brain mapping ; calcium ; Calcium signalling ; Capillaries ; CBF ; endothelium ; functional imaging ; Functional magnetic resonance imaging ; gap junction ; glia ; glutamate ; Hyperemia ; Hyperemia - diagnosis ; Hyperemia - physiopathology ; hyperpolarization ; in vivo ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal - methods ; microvascular ; Muscle, Smooth, Vascular - chemistry ; Muscle, Smooth, Vascular - physiology ; Neuroimaging ; neuron ; neurovascular coupling ; neurovascular unit ; odor ; Odors ; Pericytes ; Pericytes - chemistry ; Pericytes - physiology ; Pia Mater - blood supply ; Pia Mater - chemistry ; Pia Mater - physiology ; Smooth muscle ; Synapses ; Synapses - chemistry ; Synapses - physiology ; Velocity</subject><ispartof>Neuron (Cambridge, Mass.), 2018-07, Vol.99 (2), p.362-375.e4</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2018. The Authors</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-596d27d8dafc4d81bb20e4f49b35b56316bec1d25d27626caa9dc5ce9826c1c93</citedby><cites>FETCH-LOGICAL-c557t-596d27d8dafc4d81bb20e4f49b35b56316bec1d25d27626caa9dc5ce9826c1c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662731830480X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29937277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rungta, Ravi L.</creatorcontrib><creatorcontrib>Chaigneau, Emmanuelle</creatorcontrib><creatorcontrib>Osmanski, Bruno-Félix</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><title>Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mice shows that local synaptic activation, measured via oligodendrocyte precursor cell (OPC) Ca2+ signaling, generates a synchronous Ca2+ drop in pericytes and smooth muscle cells (SMCs) enwrapping all upstream vessels feeding the activated synapses. Surprisingly, the onset timing, direction, and amplitude of vessel diameter and blood velocity changes vary dramatically from juxta-synaptic capillaries back to the pial arteriole. These results establish a precise spatial-temporal sequence of vascular changes triggered by neural activity and essential for the interpretation of blood-flow-based imaging techniques such as BOLD-fMRI. •Odor triggers rapid Ca2+ elevations in OPC process that are input specific•All pericyte subtypes and SMCs respond to downstream synaptic activation•Synchronous mural cell activation is associated with heterogeneous local hemodynamics•The arteriole and first-order capillary dilate first and form the primary functional unit Rungta et al. perform in vivo two-photon calcium imaging of neuron, oligodendrocyte precursor cell, pericyte, and smooth muscle cell responses to olfactory sensory stimulation in combination with vessel diameter and red blood cell velocity measurements along the entire vascular arbor.</description><subject>anesthetized</subject><subject>Animals</subject><subject>astrocyte</subject><subject>awake</subject><subject>Blood flow</subject><subject>blood-brain barrier</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Chemistry - physiology</subject><subject>Brain mapping</subject><subject>calcium</subject><subject>Calcium signalling</subject><subject>Capillaries</subject><subject>CBF</subject><subject>endothelium</subject><subject>functional imaging</subject><subject>Functional magnetic resonance imaging</subject><subject>gap junction</subject><subject>glia</subject><subject>glutamate</subject><subject>Hyperemia</subject><subject>Hyperemia - diagnosis</subject><subject>Hyperemia - physiopathology</subject><subject>hyperpolarization</subject><subject>in vivo</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal - methods</subject><subject>microvascular</subject><subject>Muscle, Smooth, Vascular - chemistry</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Neuroimaging</subject><subject>neuron</subject><subject>neurovascular coupling</subject><subject>neurovascular unit</subject><subject>odor</subject><subject>Odors</subject><subject>Pericytes</subject><subject>Pericytes - chemistry</subject><subject>Pericytes - physiology</subject><subject>Pia Mater - blood supply</subject><subject>Pia Mater - chemistry</subject><subject>Pia Mater - physiology</subject><subject>Smooth muscle</subject><subject>Synapses</subject><subject>Synapses - chemistry</subject><subject>Synapses - physiology</subject><subject>Velocity</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCP0AoEhcuCbbjj_iChFYtRaoEiI-r5dgT6lViBzuptPx6vN1SPg6cZkZ-5vXMvAg9I7ghmIhXuybAmmJoKCZdg0WDCX2ANgQrWTOi1EO0wZ0StaCyPUGnOe8wJowr8hidUKVaSaXcoI9fTbbraFK1jdNs0jJBWMzof5jFx1DFobpYgz3kZqwu9zMkmLyphhSnarmG6tM-mDlDtcTb8oM3T9CjwYwZnt7FM_Tl4vzz9rK-ev_23fbNVW05l0vNlXBUus6ZwTLXkb6nGNjAVN_ynouWiB4scZQXSlBhjVHOcguqKwWxqj1Dr4-689pP4GyZO5lRz8lPJu11NF7__RL8tf4Wb7TAQgnJisDLO4EUv6-QFz35bGEcTYC4Zk0xV5i1gsmCvvgH3cU1lZMcKCmI5J1sC8WOlE0x5wTD_TAE64NneqePnumDZxoLXTwrbc__XOS-6ZdJvzeFcs4bD0ln6yFYcD6BXbSL_v8__ARYHavL</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Rungta, Ravi L.</creator><creator>Chaigneau, Emmanuelle</creator><creator>Osmanski, Bruno-Félix</creator><creator>Charpak, Serge</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180725</creationdate><title>Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia</title><author>Rungta, Ravi L. ; Chaigneau, Emmanuelle ; Osmanski, Bruno-Félix ; Charpak, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-596d27d8dafc4d81bb20e4f49b35b56316bec1d25d27626caa9dc5ce9826c1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>anesthetized</topic><topic>Animals</topic><topic>astrocyte</topic><topic>awake</topic><topic>Blood flow</topic><topic>blood-brain barrier</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Chemistry - physiology</topic><topic>Brain mapping</topic><topic>calcium</topic><topic>Calcium signalling</topic><topic>Capillaries</topic><topic>CBF</topic><topic>endothelium</topic><topic>functional imaging</topic><topic>Functional magnetic resonance imaging</topic><topic>gap junction</topic><topic>glia</topic><topic>glutamate</topic><topic>Hyperemia</topic><topic>Hyperemia - diagnosis</topic><topic>Hyperemia - physiopathology</topic><topic>hyperpolarization</topic><topic>in vivo</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal - methods</topic><topic>microvascular</topic><topic>Muscle, Smooth, Vascular - chemistry</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Neuroimaging</topic><topic>neuron</topic><topic>neurovascular coupling</topic><topic>neurovascular unit</topic><topic>odor</topic><topic>Odors</topic><topic>Pericytes</topic><topic>Pericytes - chemistry</topic><topic>Pericytes - physiology</topic><topic>Pia Mater - blood supply</topic><topic>Pia Mater - chemistry</topic><topic>Pia Mater - physiology</topic><topic>Smooth muscle</topic><topic>Synapses</topic><topic>Synapses - chemistry</topic><topic>Synapses - physiology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rungta, Ravi L.</creatorcontrib><creatorcontrib>Chaigneau, Emmanuelle</creatorcontrib><creatorcontrib>Osmanski, Bruno-Félix</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rungta, Ravi L.</au><au>Chaigneau, Emmanuelle</au><au>Osmanski, Bruno-Félix</au><au>Charpak, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>99</volume><issue>2</issue><spage>362</spage><epage>375.e4</epage><pages>362-375.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mice shows that local synaptic activation, measured via oligodendrocyte precursor cell (OPC) Ca2+ signaling, generates a synchronous Ca2+ drop in pericytes and smooth muscle cells (SMCs) enwrapping all upstream vessels feeding the activated synapses. Surprisingly, the onset timing, direction, and amplitude of vessel diameter and blood velocity changes vary dramatically from juxta-synaptic capillaries back to the pial arteriole. These results establish a precise spatial-temporal sequence of vascular changes triggered by neural activity and essential for the interpretation of blood-flow-based imaging techniques such as BOLD-fMRI. •Odor triggers rapid Ca2+ elevations in OPC process that are input specific•All pericyte subtypes and SMCs respond to downstream synaptic activation•Synchronous mural cell activation is associated with heterogeneous local hemodynamics•The arteriole and first-order capillary dilate first and form the primary functional unit Rungta et al. perform in vivo two-photon calcium imaging of neuron, oligodendrocyte precursor cell, pericyte, and smooth muscle cell responses to olfactory sensory stimulation in combination with vessel diameter and red blood cell velocity measurements along the entire vascular arbor.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29937277</pmid><doi>10.1016/j.neuron.2018.06.012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-07, Vol.99 (2), p.362-375.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069674
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects anesthetized
Animals
astrocyte
awake
Blood flow
blood-brain barrier
Brain - blood supply
Brain - physiology
Brain Chemistry - physiology
Brain mapping
calcium
Calcium signalling
Capillaries
CBF
endothelium
functional imaging
Functional magnetic resonance imaging
gap junction
glia
glutamate
Hyperemia
Hyperemia - diagnosis
Hyperemia - physiopathology
hyperpolarization
in vivo
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal - methods
microvascular
Muscle, Smooth, Vascular - chemistry
Muscle, Smooth, Vascular - physiology
Neuroimaging
neuron
neurovascular coupling
neurovascular unit
odor
Odors
Pericytes
Pericytes - chemistry
Pericytes - physiology
Pia Mater - blood supply
Pia Mater - chemistry
Pia Mater - physiology
Smooth muscle
Synapses
Synapses - chemistry
Synapses - physiology
Velocity
title Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20Compartmentalization%20of%20Functional%20Hyperemia%20from%20the%20Synapse%20to%20the%20Pia&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Rungta,%20Ravi%20L.&rft.date=2018-07-25&rft.volume=99&rft.issue=2&rft.spage=362&rft.epage=375.e4&rft.pages=362-375.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.06.012&rft_dat=%3Cproquest_pubme%3E2059043647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076175873&rft_id=info:pmid/29937277&rft_els_id=S089662731830480X&rfr_iscdi=true