Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells
Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2018-09, Vol.55 (9), p.7132-7152 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7152 |
---|---|
container_issue | 9 |
container_start_page | 7132 |
container_title | Molecular neurobiology |
container_volume | 55 |
creator | Selvakumar, Govindhasamy Pushpavathi Iyer, Shankar S Kempuraj, Duraisamy Raju, Murugesan Thangavel, Ramasamy Saeed, Daniyal Ahmed, Mohammad Ejaz Zahoor, Harris Raikwar, Sudhanshu P. Zaheer, Smita Zaheer, Asgar |
description | Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression. |
doi_str_mv | 10.1007/s12035-018-0882-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993585490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</originalsourceid><addsrcrecordid>eNp1kU1u1DAYhi0EotPCAdggS2zYGGwn_skGqZrSoVKnRVDWlhM7M64ydrCdit6Ea3ARzoSHlKogsfLie_zY7_cC8ILgNwRj8TYRiiuGMJEIS0kRfwQWhLEGESLpY7DAsqmQ4LU8AIcpXWNMKcHiKTigTSUr3uAF-L4anIZrnaeoswsenuouhwhP7Gi9sT7DM791rfs9Cz1cuxy6bfAmOj3Aj6slIj9_wKvoNhsbE7z85kzx3Fj4OUebElpb43S2Bh6PYcwhuQSdhxdUwE86w5Mw6p3zNm5cBy_sFIMv1qUdhvQMPOn1kOzzu_MIfDl9f7X8gM4vV2fL43PU1QJn1DKpJZetZbUwDaeYSlZ2oUnbYsaJZkQKZo3p-5oxIwVlopHW1KxntjaEV0fg3ewdp3ZnTVciRz2oMbqdjrcqaKf-nni3VZtwozjmvBasCF7fCWL4OtmU1c6lrkTQ3oYpKdI0FcayIrKgr_5Br8MUS-SZYpLVDS4UmakuhpSi7e8_Q7Da967m3lXpXe17V_sULx-muL_xp-gC0BlIZeRLVw-e_q_1F8NpupM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993585490</pqid></control><display><type>article</type><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</creator><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</creatorcontrib><description>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</description><identifier>ISSN: 0893-7648</identifier><identifier>ISSN: 1559-1182</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0882-6</identifier><identifier>PMID: 29383690</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Antioxidants ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; BAX protein ; Bcl-2 protein ; bcl-2-Associated X Protein - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Caspase ; Caspases - metabolism ; Cell Biology ; Cell death ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Chromatin - metabolism ; Chromatin - ultrastructure ; Cytochrome c ; Cytochromes c - metabolism ; Cytosol - drug effects ; Cytosol - metabolism ; Depolarization ; Dopamine receptors ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Electron microscopy ; Energy metabolism ; Enzyme Activation - drug effects ; Glia maturation factor ; Glia Maturation Factor - pharmacology ; Humans ; Hydroxylase ; Inflammation ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Models, Biological ; Movement disorders ; Neurobiology ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Neuronal-glial interactions ; Neurosciences ; Oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Parkinson's disease ; Pathogenesis ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phagocytosis ; Rats ; Reactive Oxygen Species - metabolism ; Risk factors ; Rodents ; Transcription ; Transmission electron microscopy ; Tyrosine 3-Monooxygenase - metabolism</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7132-7152</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</citedby><cites>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</cites><orcidid>0000-0003-3344-0371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-018-0882-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-018-0882-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29383690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi</creatorcontrib><creatorcontrib>Iyer, Shankar S</creatorcontrib><creatorcontrib>Kempuraj, Duraisamy</creatorcontrib><creatorcontrib>Raju, Murugesan</creatorcontrib><creatorcontrib>Thangavel, Ramasamy</creatorcontrib><creatorcontrib>Saeed, Daniyal</creatorcontrib><creatorcontrib>Ahmed, Mohammad Ejaz</creatorcontrib><creatorcontrib>Zahoor, Harris</creatorcontrib><creatorcontrib>Raikwar, Sudhanshu P.</creatorcontrib><creatorcontrib>Zaheer, Smita</creatorcontrib><creatorcontrib>Zaheer, Asgar</creatorcontrib><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>BAX protein</subject><subject>Bcl-2 protein</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspase</subject><subject>Caspases - metabolism</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - ultrastructure</subject><subject>Cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Depolarization</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Electron microscopy</subject><subject>Energy metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Glia maturation factor</subject><subject>Glia Maturation Factor - pharmacology</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Inflammation</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Models, Biological</subject><subject>Movement disorders</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuronal-glial interactions</subject><subject>Neurosciences</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phagocytosis</subject><subject>Rats</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Transcription</subject><subject>Transmission electron microscopy</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><issn>0893-7648</issn><issn>1559-1182</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1u1DAYhi0EotPCAdggS2zYGGwn_skGqZrSoVKnRVDWlhM7M64ydrCdit6Ea3ARzoSHlKogsfLie_zY7_cC8ILgNwRj8TYRiiuGMJEIS0kRfwQWhLEGESLpY7DAsqmQ4LU8AIcpXWNMKcHiKTigTSUr3uAF-L4anIZrnaeoswsenuouhwhP7Gi9sT7DM791rfs9Cz1cuxy6bfAmOj3Aj6slIj9_wKvoNhsbE7z85kzx3Fj4OUebElpb43S2Bh6PYcwhuQSdhxdUwE86w5Mw6p3zNm5cBy_sFIMv1qUdhvQMPOn1kOzzu_MIfDl9f7X8gM4vV2fL43PU1QJn1DKpJZetZbUwDaeYSlZ2oUnbYsaJZkQKZo3p-5oxIwVlopHW1KxntjaEV0fg3ewdp3ZnTVciRz2oMbqdjrcqaKf-nni3VZtwozjmvBasCF7fCWL4OtmU1c6lrkTQ3oYpKdI0FcayIrKgr_5Br8MUS-SZYpLVDS4UmakuhpSi7e8_Q7Da967m3lXpXe17V_sULx-muL_xp-gC0BlIZeRLVw-e_q_1F8NpupM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Selvakumar, Govindhasamy Pushpavathi</creator><creator>Iyer, Shankar S</creator><creator>Kempuraj, Duraisamy</creator><creator>Raju, Murugesan</creator><creator>Thangavel, Ramasamy</creator><creator>Saeed, Daniyal</creator><creator>Ahmed, Mohammad Ejaz</creator><creator>Zahoor, Harris</creator><creator>Raikwar, Sudhanshu P.</creator><creator>Zaheer, Smita</creator><creator>Zaheer, Asgar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3344-0371</orcidid></search><sort><creationdate>20180901</creationdate><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><author>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>BAX protein</topic><topic>Bcl-2 protein</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspase</topic><topic>Caspases - metabolism</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - ultrastructure</topic><topic>Cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Depolarization</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Electron microscopy</topic><topic>Energy metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Glia maturation factor</topic><topic>Glia Maturation Factor - pharmacology</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Inflammation</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Models, Biological</topic><topic>Movement disorders</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuronal-glial interactions</topic><topic>Neurosciences</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phagocytosis</topic><topic>Rats</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Transcription</topic><topic>Transmission electron microscopy</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi</creatorcontrib><creatorcontrib>Iyer, Shankar S</creatorcontrib><creatorcontrib>Kempuraj, Duraisamy</creatorcontrib><creatorcontrib>Raju, Murugesan</creatorcontrib><creatorcontrib>Thangavel, Ramasamy</creatorcontrib><creatorcontrib>Saeed, Daniyal</creatorcontrib><creatorcontrib>Ahmed, Mohammad Ejaz</creatorcontrib><creatorcontrib>Zahoor, Harris</creatorcontrib><creatorcontrib>Raikwar, Sudhanshu P.</creatorcontrib><creatorcontrib>Zaheer, Smita</creatorcontrib><creatorcontrib>Zaheer, Asgar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvakumar, Govindhasamy Pushpavathi</au><au>Iyer, Shankar S</au><au>Kempuraj, Duraisamy</au><au>Raju, Murugesan</au><au>Thangavel, Ramasamy</au><au>Saeed, Daniyal</au><au>Ahmed, Mohammad Ejaz</au><au>Zahoor, Harris</au><au>Raikwar, Sudhanshu P.</au><au>Zaheer, Smita</au><au>Zaheer, Asgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7132</spage><epage>7152</epage><pages>7132-7152</pages><issn>0893-7648</issn><issn>1559-1182</issn><eissn>1559-1182</eissn><abstract>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29383690</pmid><doi>10.1007/s12035-018-0882-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3344-0371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2018-09, Vol.55 (9), p.7132-7152 |
issn | 0893-7648 1559-1182 1559-1182 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066475 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adenosine Triphosphate - metabolism Animals Antioxidants Apoptosis Apoptosis - drug effects Autophagy BAX protein Bcl-2 protein bcl-2-Associated X Protein - metabolism Biomedical and Life Sciences Biomedicine Caspase Caspases - metabolism Cell Biology Cell death Cell Line Cell Proliferation - drug effects Cell Survival - drug effects Chromatin - metabolism Chromatin - ultrastructure Cytochrome c Cytochromes c - metabolism Cytosol - drug effects Cytosol - metabolism Depolarization Dopamine receptors Dopaminergic Neurons - drug effects Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Electron microscopy Energy metabolism Enzyme Activation - drug effects Glia maturation factor Glia Maturation Factor - pharmacology Humans Hydroxylase Inflammation Membrane potential Membrane Potential, Mitochondrial - drug effects Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - ultrastructure Models, Biological Movement disorders Neurobiology Neurodegeneration Neurodegenerative diseases Neurology Neuronal-glial interactions Neurosciences Oxidative phosphorylation Oxidative Phosphorylation - drug effects Oxidative stress Oxidative Stress - drug effects Parkinson's disease Pathogenesis Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Phagocytosis Rats Reactive Oxygen Species - metabolism Risk factors Rodents Transcription Transmission electron microscopy Tyrosine 3-Monooxygenase - metabolism |
title | Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glia%20Maturation%20Factor%20Dependent%20Inhibition%20of%20Mitochondrial%20PGC-1%CE%B1%20Triggers%20Oxidative%20Stress-Mediated%20Apoptosis%20in%20N27%20Rat%20Dopaminergic%20Neuronal%20Cells&rft.jtitle=Molecular%20neurobiology&rft.au=Selvakumar,%20Govindhasamy%20Pushpavathi&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7132&rft.epage=7152&rft.pages=7132-7152&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0882-6&rft_dat=%3Cproquest_pubme%3E1993585490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993585490&rft_id=info:pmid/29383690&rfr_iscdi=true |