Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells

Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2018-09, Vol.55 (9), p.7132-7152
Hauptverfasser: Selvakumar, Govindhasamy Pushpavathi, Iyer, Shankar S, Kempuraj, Duraisamy, Raju, Murugesan, Thangavel, Ramasamy, Saeed, Daniyal, Ahmed, Mohammad Ejaz, Zahoor, Harris, Raikwar, Sudhanshu P., Zaheer, Smita, Zaheer, Asgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7152
container_issue 9
container_start_page 7132
container_title Molecular neurobiology
container_volume 55
creator Selvakumar, Govindhasamy Pushpavathi
Iyer, Shankar S
Kempuraj, Duraisamy
Raju, Murugesan
Thangavel, Ramasamy
Saeed, Daniyal
Ahmed, Mohammad Ejaz
Zahoor, Harris
Raikwar, Sudhanshu P.
Zaheer, Smita
Zaheer, Asgar
description Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.
doi_str_mv 10.1007/s12035-018-0882-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993585490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</originalsourceid><addsrcrecordid>eNp1kU1u1DAYhi0EotPCAdggS2zYGGwn_skGqZrSoVKnRVDWlhM7M64ydrCdit6Ea3ARzoSHlKogsfLie_zY7_cC8ILgNwRj8TYRiiuGMJEIS0kRfwQWhLEGESLpY7DAsqmQ4LU8AIcpXWNMKcHiKTigTSUr3uAF-L4anIZrnaeoswsenuouhwhP7Gi9sT7DM791rfs9Cz1cuxy6bfAmOj3Aj6slIj9_wKvoNhsbE7z85kzx3Fj4OUebElpb43S2Bh6PYcwhuQSdhxdUwE86w5Mw6p3zNm5cBy_sFIMv1qUdhvQMPOn1kOzzu_MIfDl9f7X8gM4vV2fL43PU1QJn1DKpJZetZbUwDaeYSlZ2oUnbYsaJZkQKZo3p-5oxIwVlopHW1KxntjaEV0fg3ewdp3ZnTVciRz2oMbqdjrcqaKf-nni3VZtwozjmvBasCF7fCWL4OtmU1c6lrkTQ3oYpKdI0FcayIrKgr_5Br8MUS-SZYpLVDS4UmakuhpSi7e8_Q7Da967m3lXpXe17V_sULx-muL_xp-gC0BlIZeRLVw-e_q_1F8NpupM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993585490</pqid></control><display><type>article</type><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</creator><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</creatorcontrib><description>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</description><identifier>ISSN: 0893-7648</identifier><identifier>ISSN: 1559-1182</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0882-6</identifier><identifier>PMID: 29383690</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Antioxidants ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; BAX protein ; Bcl-2 protein ; bcl-2-Associated X Protein - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Caspase ; Caspases - metabolism ; Cell Biology ; Cell death ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Chromatin - metabolism ; Chromatin - ultrastructure ; Cytochrome c ; Cytochromes c - metabolism ; Cytosol - drug effects ; Cytosol - metabolism ; Depolarization ; Dopamine receptors ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Electron microscopy ; Energy metabolism ; Enzyme Activation - drug effects ; Glia maturation factor ; Glia Maturation Factor - pharmacology ; Humans ; Hydroxylase ; Inflammation ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Models, Biological ; Movement disorders ; Neurobiology ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Neuronal-glial interactions ; Neurosciences ; Oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Parkinson's disease ; Pathogenesis ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phagocytosis ; Rats ; Reactive Oxygen Species - metabolism ; Risk factors ; Rodents ; Transcription ; Transmission electron microscopy ; Tyrosine 3-Monooxygenase - metabolism</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7132-7152</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</citedby><cites>FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</cites><orcidid>0000-0003-3344-0371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-018-0882-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-018-0882-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29383690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi</creatorcontrib><creatorcontrib>Iyer, Shankar S</creatorcontrib><creatorcontrib>Kempuraj, Duraisamy</creatorcontrib><creatorcontrib>Raju, Murugesan</creatorcontrib><creatorcontrib>Thangavel, Ramasamy</creatorcontrib><creatorcontrib>Saeed, Daniyal</creatorcontrib><creatorcontrib>Ahmed, Mohammad Ejaz</creatorcontrib><creatorcontrib>Zahoor, Harris</creatorcontrib><creatorcontrib>Raikwar, Sudhanshu P.</creatorcontrib><creatorcontrib>Zaheer, Smita</creatorcontrib><creatorcontrib>Zaheer, Asgar</creatorcontrib><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>BAX protein</subject><subject>Bcl-2 protein</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspase</subject><subject>Caspases - metabolism</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - ultrastructure</subject><subject>Cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Depolarization</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Electron microscopy</subject><subject>Energy metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Glia maturation factor</subject><subject>Glia Maturation Factor - pharmacology</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Inflammation</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Models, Biological</subject><subject>Movement disorders</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuronal-glial interactions</subject><subject>Neurosciences</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phagocytosis</subject><subject>Rats</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Transcription</subject><subject>Transmission electron microscopy</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><issn>0893-7648</issn><issn>1559-1182</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1u1DAYhi0EotPCAdggS2zYGGwn_skGqZrSoVKnRVDWlhM7M64ydrCdit6Ea3ARzoSHlKogsfLie_zY7_cC8ILgNwRj8TYRiiuGMJEIS0kRfwQWhLEGESLpY7DAsqmQ4LU8AIcpXWNMKcHiKTigTSUr3uAF-L4anIZrnaeoswsenuouhwhP7Gi9sT7DM791rfs9Cz1cuxy6bfAmOj3Aj6slIj9_wKvoNhsbE7z85kzx3Fj4OUebElpb43S2Bh6PYcwhuQSdhxdUwE86w5Mw6p3zNm5cBy_sFIMv1qUdhvQMPOn1kOzzu_MIfDl9f7X8gM4vV2fL43PU1QJn1DKpJZetZbUwDaeYSlZ2oUnbYsaJZkQKZo3p-5oxIwVlopHW1KxntjaEV0fg3ewdp3ZnTVciRz2oMbqdjrcqaKf-nni3VZtwozjmvBasCF7fCWL4OtmU1c6lrkTQ3oYpKdI0FcayIrKgr_5Br8MUS-SZYpLVDS4UmakuhpSi7e8_Q7Da967m3lXpXe17V_sULx-muL_xp-gC0BlIZeRLVw-e_q_1F8NpupM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Selvakumar, Govindhasamy Pushpavathi</creator><creator>Iyer, Shankar S</creator><creator>Kempuraj, Duraisamy</creator><creator>Raju, Murugesan</creator><creator>Thangavel, Ramasamy</creator><creator>Saeed, Daniyal</creator><creator>Ahmed, Mohammad Ejaz</creator><creator>Zahoor, Harris</creator><creator>Raikwar, Sudhanshu P.</creator><creator>Zaheer, Smita</creator><creator>Zaheer, Asgar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3344-0371</orcidid></search><sort><creationdate>20180901</creationdate><title>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</title><author>Selvakumar, Govindhasamy Pushpavathi ; Iyer, Shankar S ; Kempuraj, Duraisamy ; Raju, Murugesan ; Thangavel, Ramasamy ; Saeed, Daniyal ; Ahmed, Mohammad Ejaz ; Zahoor, Harris ; Raikwar, Sudhanshu P. ; Zaheer, Smita ; Zaheer, Asgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b58a868be547d9620285088a1bb0561a51875eddff455d8725798ed45f5e4d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>BAX protein</topic><topic>Bcl-2 protein</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspase</topic><topic>Caspases - metabolism</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - ultrastructure</topic><topic>Cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Depolarization</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Electron microscopy</topic><topic>Energy metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Glia maturation factor</topic><topic>Glia Maturation Factor - pharmacology</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Inflammation</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Models, Biological</topic><topic>Movement disorders</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuronal-glial interactions</topic><topic>Neurosciences</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phagocytosis</topic><topic>Rats</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Transcription</topic><topic>Transmission electron microscopy</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvakumar, Govindhasamy Pushpavathi</creatorcontrib><creatorcontrib>Iyer, Shankar S</creatorcontrib><creatorcontrib>Kempuraj, Duraisamy</creatorcontrib><creatorcontrib>Raju, Murugesan</creatorcontrib><creatorcontrib>Thangavel, Ramasamy</creatorcontrib><creatorcontrib>Saeed, Daniyal</creatorcontrib><creatorcontrib>Ahmed, Mohammad Ejaz</creatorcontrib><creatorcontrib>Zahoor, Harris</creatorcontrib><creatorcontrib>Raikwar, Sudhanshu P.</creatorcontrib><creatorcontrib>Zaheer, Smita</creatorcontrib><creatorcontrib>Zaheer, Asgar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvakumar, Govindhasamy Pushpavathi</au><au>Iyer, Shankar S</au><au>Kempuraj, Duraisamy</au><au>Raju, Murugesan</au><au>Thangavel, Ramasamy</au><au>Saeed, Daniyal</au><au>Ahmed, Mohammad Ejaz</au><au>Zahoor, Harris</au><au>Raikwar, Sudhanshu P.</au><au>Zaheer, Smita</au><au>Zaheer, Asgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7132</spage><epage>7152</epage><pages>7132-7152</pages><issn>0893-7648</issn><issn>1559-1182</issn><eissn>1559-1182</eissn><abstract>Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29383690</pmid><doi>10.1007/s12035-018-0882-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3344-0371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2018-09, Vol.55 (9), p.7132-7152
issn 0893-7648
1559-1182
1559-1182
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066475
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adenosine Triphosphate - metabolism
Animals
Antioxidants
Apoptosis
Apoptosis - drug effects
Autophagy
BAX protein
Bcl-2 protein
bcl-2-Associated X Protein - metabolism
Biomedical and Life Sciences
Biomedicine
Caspase
Caspases - metabolism
Cell Biology
Cell death
Cell Line
Cell Proliferation - drug effects
Cell Survival - drug effects
Chromatin - metabolism
Chromatin - ultrastructure
Cytochrome c
Cytochromes c - metabolism
Cytosol - drug effects
Cytosol - metabolism
Depolarization
Dopamine receptors
Dopaminergic Neurons - drug effects
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Electron microscopy
Energy metabolism
Enzyme Activation - drug effects
Glia maturation factor
Glia Maturation Factor - pharmacology
Humans
Hydroxylase
Inflammation
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Models, Biological
Movement disorders
Neurobiology
Neurodegeneration
Neurodegenerative diseases
Neurology
Neuronal-glial interactions
Neurosciences
Oxidative phosphorylation
Oxidative Phosphorylation - drug effects
Oxidative stress
Oxidative Stress - drug effects
Parkinson's disease
Pathogenesis
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Phagocytosis
Rats
Reactive Oxygen Species - metabolism
Risk factors
Rodents
Transcription
Transmission electron microscopy
Tyrosine 3-Monooxygenase - metabolism
title Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glia%20Maturation%20Factor%20Dependent%20Inhibition%20of%20Mitochondrial%20PGC-1%CE%B1%20Triggers%20Oxidative%20Stress-Mediated%20Apoptosis%20in%20N27%20Rat%20Dopaminergic%20Neuronal%20Cells&rft.jtitle=Molecular%20neurobiology&rft.au=Selvakumar,%20Govindhasamy%20Pushpavathi&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7132&rft.epage=7152&rft.pages=7132-7152&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0882-6&rft_dat=%3Cproquest_pubme%3E1993585490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993585490&rft_id=info:pmid/29383690&rfr_iscdi=true