Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography

Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure–function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-07, Vol.140 (29), p.9154-9158
Hauptverfasser: Schmidt, Joel E, Peng, Linqing, Paioni, Alessandra Lucini, Ehren, Helena Leona, Guo, Wei, Mazumder, Baishakhi, Matthijs de Winter, D. A, Attila, Özgün, Fu, Donglong, Chowdhury, Abhishek Dutta, Houben, Klaartje, Baldus, Marc, Poplawsky, Jonathan D, Weckhuysen, Bert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9158
container_issue 29
container_start_page 9154
container_title Journal of the American Chemical Society
container_volume 140
creator Schmidt, Joel E
Peng, Linqing
Paioni, Alessandra Lucini
Ehren, Helena Leona
Guo, Wei
Mazumder, Baishakhi
Matthijs de Winter, D. A
Attila, Özgün
Fu, Donglong
Chowdhury, Abhishek Dutta
Houben, Klaartje
Baldus, Marc
Poplawsky, Jonathan D
Weckhuysen, Bert M
description Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure–function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si–Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5–1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.
doi_str_mv 10.1021/jacs.8b04494
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070242161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-6a53c53867ff434442be3bc84dd3b115951d6312df6f778bca0e2359717f768c3</originalsourceid><addsrcrecordid>eNqFkc9LHDEcxUNpqVvrzbOEnnroaH5Nkr0IsmgrbLGgnkMmk9nJkpmsScbif2-W3VqFQk9JyCfvffMeAMcYnWJE8Nlam3QqG8TYnL0DM1wTVNWY8PdghhAilZCcHoBPKa3LkRGJP4IDWrZUSDIDt9cpeJ3duIILP6VsY4Khg0u36jO89HawY07QjfBn8NZMXkd46-yjTfC3yz28yGGAv2JoLLwLQ1hFvemfPoMPnfbJHu3XQ3B_dXm3-FEtb75fLy6WlWZC5IrrmpqaSi66jlHGGGksbYxkbUsbjOt5jVtOMWk73gkhG6ORJbSeCyw6waWhh-B8p7uZmsG2powatVeb6AYdn1TQTr29GV2vVuFRccRrJFAR-LITCCk7lYzL1vQmjKM1WWEmSqS0QF_3LjE8TDZlNbhkrPd6tGFKimDMpSjJov-jxZQwgjku6LcdamJIKdruZWyM1LZXte1V7Xst-Mnrr77Af4r8a719tQ5THEvy_9Z6BlNEqw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070242161</pqid></control><display><type>article</type><title>Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography</title><source>ACS Publications</source><creator>Schmidt, Joel E ; Peng, Linqing ; Paioni, Alessandra Lucini ; Ehren, Helena Leona ; Guo, Wei ; Mazumder, Baishakhi ; Matthijs de Winter, D. A ; Attila, Özgün ; Fu, Donglong ; Chowdhury, Abhishek Dutta ; Houben, Klaartje ; Baldus, Marc ; Poplawsky, Jonathan D ; Weckhuysen, Bert M</creator><creatorcontrib>Schmidt, Joel E ; Peng, Linqing ; Paioni, Alessandra Lucini ; Ehren, Helena Leona ; Guo, Wei ; Mazumder, Baishakhi ; Matthijs de Winter, D. A ; Attila, Özgün ; Fu, Donglong ; Chowdhury, Abhishek Dutta ; Houben, Klaartje ; Baldus, Marc ; Poplawsky, Jonathan D ; Weckhuysen, Bert M ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure–function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si–Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5–1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b04494</identifier><identifier>PMID: 30003782</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; aluminum ; Bronsted acids ; carbon ; catalysts ; electron microscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nuclear magnetic resonance spectroscopy ; oxygen ; phosphorus ; porous media ; silicon ; stable isotopes ; structure-activity relationships ; tomography</subject><ispartof>Journal of the American Chemical Society, 2018-07, Vol.140 (29), p.9154-9158</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-6a53c53867ff434442be3bc84dd3b115951d6312df6f778bca0e2359717f768c3</citedby><cites>FETCH-LOGICAL-a477t-6a53c53867ff434442be3bc84dd3b115951d6312df6f778bca0e2359717f768c3</cites><orcidid>0000-0001-5245-1426 ; 0000-0002-4121-7375 ; 0000-0002-9534-1902 ; 0000000295341902 ; 0000000241217375 ; 0000000152451426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b04494$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b04494$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30003782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1474493$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Joel E</creatorcontrib><creatorcontrib>Peng, Linqing</creatorcontrib><creatorcontrib>Paioni, Alessandra Lucini</creatorcontrib><creatorcontrib>Ehren, Helena Leona</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Mazumder, Baishakhi</creatorcontrib><creatorcontrib>Matthijs de Winter, D. A</creatorcontrib><creatorcontrib>Attila, Özgün</creatorcontrib><creatorcontrib>Fu, Donglong</creatorcontrib><creatorcontrib>Chowdhury, Abhishek Dutta</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Baldus, Marc</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D</creatorcontrib><creatorcontrib>Weckhuysen, Bert M</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure–function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si–Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5–1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.</description><subject>active sites</subject><subject>aluminum</subject><subject>Bronsted acids</subject><subject>carbon</subject><subject>catalysts</subject><subject>electron microscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>oxygen</subject><subject>phosphorus</subject><subject>porous media</subject><subject>silicon</subject><subject>stable isotopes</subject><subject>structure-activity relationships</subject><subject>tomography</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LHDEcxUNpqVvrzbOEnnroaH5Nkr0IsmgrbLGgnkMmk9nJkpmsScbif2-W3VqFQk9JyCfvffMeAMcYnWJE8Nlam3QqG8TYnL0DM1wTVNWY8PdghhAilZCcHoBPKa3LkRGJP4IDWrZUSDIDt9cpeJ3duIILP6VsY4Khg0u36jO89HawY07QjfBn8NZMXkd46-yjTfC3yz28yGGAv2JoLLwLQ1hFvemfPoMPnfbJHu3XQ3B_dXm3-FEtb75fLy6WlWZC5IrrmpqaSi66jlHGGGksbYxkbUsbjOt5jVtOMWk73gkhG6ORJbSeCyw6waWhh-B8p7uZmsG2powatVeb6AYdn1TQTr29GV2vVuFRccRrJFAR-LITCCk7lYzL1vQmjKM1WWEmSqS0QF_3LjE8TDZlNbhkrPd6tGFKimDMpSjJov-jxZQwgjku6LcdamJIKdruZWyM1LZXte1V7Xst-Mnrr77Af4r8a719tQ5THEvy_9Z6BlNEqw0</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Schmidt, Joel E</creator><creator>Peng, Linqing</creator><creator>Paioni, Alessandra Lucini</creator><creator>Ehren, Helena Leona</creator><creator>Guo, Wei</creator><creator>Mazumder, Baishakhi</creator><creator>Matthijs de Winter, D. A</creator><creator>Attila, Özgün</creator><creator>Fu, Donglong</creator><creator>Chowdhury, Abhishek Dutta</creator><creator>Houben, Klaartje</creator><creator>Baldus, Marc</creator><creator>Poplawsky, Jonathan D</creator><creator>Weckhuysen, Bert M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid><orcidid>https://orcid.org/0000-0002-9534-1902</orcidid><orcidid>https://orcid.org/0000000295341902</orcidid><orcidid>https://orcid.org/0000000241217375</orcidid><orcidid>https://orcid.org/0000000152451426</orcidid></search><sort><creationdate>20180725</creationdate><title>Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography</title><author>Schmidt, Joel E ; Peng, Linqing ; Paioni, Alessandra Lucini ; Ehren, Helena Leona ; Guo, Wei ; Mazumder, Baishakhi ; Matthijs de Winter, D. A ; Attila, Özgün ; Fu, Donglong ; Chowdhury, Abhishek Dutta ; Houben, Klaartje ; Baldus, Marc ; Poplawsky, Jonathan D ; Weckhuysen, Bert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-6a53c53867ff434442be3bc84dd3b115951d6312df6f778bca0e2359717f768c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>active sites</topic><topic>aluminum</topic><topic>Bronsted acids</topic><topic>carbon</topic><topic>catalysts</topic><topic>electron microscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>oxygen</topic><topic>phosphorus</topic><topic>porous media</topic><topic>silicon</topic><topic>stable isotopes</topic><topic>structure-activity relationships</topic><topic>tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Joel E</creatorcontrib><creatorcontrib>Peng, Linqing</creatorcontrib><creatorcontrib>Paioni, Alessandra Lucini</creatorcontrib><creatorcontrib>Ehren, Helena Leona</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Mazumder, Baishakhi</creatorcontrib><creatorcontrib>Matthijs de Winter, D. A</creatorcontrib><creatorcontrib>Attila, Özgün</creatorcontrib><creatorcontrib>Fu, Donglong</creatorcontrib><creatorcontrib>Chowdhury, Abhishek Dutta</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Baldus, Marc</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D</creatorcontrib><creatorcontrib>Weckhuysen, Bert M</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Joel E</au><au>Peng, Linqing</au><au>Paioni, Alessandra Lucini</au><au>Ehren, Helena Leona</au><au>Guo, Wei</au><au>Mazumder, Baishakhi</au><au>Matthijs de Winter, D. A</au><au>Attila, Özgün</au><au>Fu, Donglong</au><au>Chowdhury, Abhishek Dutta</au><au>Houben, Klaartje</au><au>Baldus, Marc</au><au>Poplawsky, Jonathan D</au><au>Weckhuysen, Bert M</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>140</volume><issue>29</issue><spage>9154</spage><epage>9158</epage><pages>9154-9158</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure–function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si–Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5–1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30003782</pmid><doi>10.1021/jacs.8b04494</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid><orcidid>https://orcid.org/0000-0002-9534-1902</orcidid><orcidid>https://orcid.org/0000000295341902</orcidid><orcidid>https://orcid.org/0000000241217375</orcidid><orcidid>https://orcid.org/0000000152451426</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-07, Vol.140 (29), p.9154-9158
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065070
source ACS Publications
subjects active sites
aluminum
Bronsted acids
carbon
catalysts
electron microscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nuclear magnetic resonance spectroscopy
oxygen
phosphorus
porous media
silicon
stable isotopes
structure-activity relationships
tomography
title Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolating%20Clusters%20of%20Light%20Elements%20in%20Molecular%20Sieves%20with%20Atom%20Probe%20Tomography&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Schmidt,%20Joel%20E&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-07-25&rft.volume=140&rft.issue=29&rft.spage=9154&rft.epage=9158&rft.pages=9154-9158&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b04494&rft_dat=%3Cproquest_pubme%3E2070242161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070242161&rft_id=info:pmid/30003782&rfr_iscdi=true