Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes

Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-07, Vol.115 (30), p.E7073-E7080
Hauptverfasser: Kong, Cherrie H. T., Rog-Zielinska, Eva A., Kohl, Peter, Orchard, Clive H., Cannell, Mark B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E7080
container_issue 30
container_start_page E7073
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Kong, Cherrie H. T.
Rog-Zielinska, Eva A.
Kohl, Peter
Orchard, Clive H.
Cannell, Mark B.
description Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and >50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.
doi_str_mv 10.1073/pnas.1805979115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511307</jstor_id><sourcerecordid>26511307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qCBbKmROVpV64hB3HdmxfKiEELdJKHGjPlmM7Jask3trOSvvv69VSaDnNYb55mvceQhcErgkIutxMJl0TCVwJRQj_gBYEFKkapuAjWgDUopKsZifoNKU1ACgu4Rid1Eop0kC9QA9PYZizx2PY-tFPGfcTzs8e5yrP7Tx4nHYp-xGHDkfTtn3GZnKFnpPH1kTXh3EX7C779AkddWZI_vxlnqGf93c_br9Xq8dvD7c3q8oyRnMlpLHGgXWiIbKlnQMCID0VnbPStW1NKVGcOpDGWcsZI95KEIwb2gklDD1DXw-6m7kdvbPl6WgGvYn9aOJOB9Pr_zdT_6x_ha1uoOEApAhcvQjE8Hv2KeuxT9YPg5l88aVraCRlXNZ79Ms7dB3mOBV7hSoZ7kNnhVoeKBtDStF3r88Q0Pua9L4m_VZTufj8r4dX_m8vBbg8AOuUQ3zbN5wQWhT_AB_ZmPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099979114</pqid></control><display><type>article</type><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</creator><creatorcontrib>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</creatorcontrib><description>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (&gt;4 kDa) solutes did not freely fill the t-tubule lumen of both species and &gt;50% of the t-tubule volume was available to solutes &gt;70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1805979115</identifier><identifier>PMID: 29991602</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Biological Transport, Active - physiology ; Cardiomyocytes ; Cell surface ; Diffusion ; Diffusion coefficient ; Electron microscopy ; Entrances ; Finite element method ; Fluorescence ; Fluorescence recovery after photobleaching ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Male ; Membranes ; Mice ; Models, Cardiovascular ; Molecules ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Photobleaching ; PNAS Plus ; Rabbits ; Solute movement ; Solutes ; Tortuosity ; Tubules ; Ventricle</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (30), p.E7073-E7080</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 24, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</citedby><cites>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</cites><orcidid>0000-0002-4816-0463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511307$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511307$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29991602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Cherrie H. T.</creatorcontrib><creatorcontrib>Rog-Zielinska, Eva A.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Orchard, Clive H.</creatorcontrib><creatorcontrib>Cannell, Mark B.</creatorcontrib><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (&gt;4 kDa) solutes did not freely fill the t-tubule lumen of both species and &gt;50% of the t-tubule volume was available to solutes &gt;70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biological Transport, Active - physiology</subject><subject>Cardiomyocytes</subject><subject>Cell surface</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electron microscopy</subject><subject>Entrances</subject><subject>Finite element method</subject><subject>Fluorescence</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Models, Cardiovascular</subject><subject>Molecules</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Photobleaching</subject><subject>PNAS Plus</subject><subject>Rabbits</subject><subject>Solute movement</subject><subject>Solutes</subject><subject>Tortuosity</subject><subject>Tubules</subject><subject>Ventricle</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3DAQha2qCBbKmROVpV64hB3HdmxfKiEELdJKHGjPlmM7Jask3trOSvvv69VSaDnNYb55mvceQhcErgkIutxMJl0TCVwJRQj_gBYEFKkapuAjWgDUopKsZifoNKU1ACgu4Rid1Eop0kC9QA9PYZizx2PY-tFPGfcTzs8e5yrP7Tx4nHYp-xGHDkfTtn3GZnKFnpPH1kTXh3EX7C779AkddWZI_vxlnqGf93c_br9Xq8dvD7c3q8oyRnMlpLHGgXWiIbKlnQMCID0VnbPStW1NKVGcOpDGWcsZI95KEIwb2gklDD1DXw-6m7kdvbPl6WgGvYn9aOJOB9Pr_zdT_6x_ha1uoOEApAhcvQjE8Hv2KeuxT9YPg5l88aVraCRlXNZ79Ms7dB3mOBV7hSoZ7kNnhVoeKBtDStF3r88Q0Pua9L4m_VZTufj8r4dX_m8vBbg8AOuUQ3zbN5wQWhT_AB_ZmPo</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Kong, Cherrie H. T.</creator><creator>Rog-Zielinska, Eva A.</creator><creator>Kohl, Peter</creator><creator>Orchard, Clive H.</creator><creator>Cannell, Mark B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4816-0463</orcidid></search><sort><creationdate>20180724</creationdate><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><author>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biological Transport, Active - physiology</topic><topic>Cardiomyocytes</topic><topic>Cell surface</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electron microscopy</topic><topic>Entrances</topic><topic>Finite element method</topic><topic>Fluorescence</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Models, Cardiovascular</topic><topic>Molecules</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Photobleaching</topic><topic>PNAS Plus</topic><topic>Rabbits</topic><topic>Solute movement</topic><topic>Solutes</topic><topic>Tortuosity</topic><topic>Tubules</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Cherrie H. T.</creatorcontrib><creatorcontrib>Rog-Zielinska, Eva A.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Orchard, Clive H.</creatorcontrib><creatorcontrib>Cannell, Mark B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Cherrie H. T.</au><au>Rog-Zielinska, Eva A.</au><au>Kohl, Peter</au><au>Orchard, Clive H.</au><au>Cannell, Mark B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>115</volume><issue>30</issue><spage>E7073</spage><epage>E7080</epage><pages>E7073-E7080</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (&gt;4 kDa) solutes did not freely fill the t-tubule lumen of both species and &gt;50% of the t-tubule volume was available to solutes &gt;70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29991602</pmid><doi>10.1073/pnas.1805979115</doi><orcidid>https://orcid.org/0000-0002-4816-0463</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (30), p.E7073-E7080
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065001
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Biological Transport, Active - physiology
Cardiomyocytes
Cell surface
Diffusion
Diffusion coefficient
Electron microscopy
Entrances
Finite element method
Fluorescence
Fluorescence recovery after photobleaching
Heart Ventricles - cytology
Heart Ventricles - metabolism
Male
Membranes
Mice
Models, Cardiovascular
Molecules
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Photobleaching
PNAS Plus
Rabbits
Solute movement
Solutes
Tortuosity
Tubules
Ventricle
title Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solute%20movement%20in%20the%20t-tubule%20system%20of%20rabbit%20and%20mouse%20cardiomyocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kong,%20Cherrie%20H.%20T.&rft.date=2018-07-24&rft.volume=115&rft.issue=30&rft.spage=E7073&rft.epage=E7080&rft.pages=E7073-E7080&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1805979115&rft_dat=%3Cjstor_pubme%3E26511307%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099979114&rft_id=info:pmid/29991602&rft_jstor_id=26511307&rfr_iscdi=true