Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes
Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coe...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-07, Vol.115 (30), p.E7073-E7080 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E7080 |
---|---|
container_issue | 30 |
container_start_page | E7073 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Kong, Cherrie H. T. Rog-Zielinska, Eva A. Kohl, Peter Orchard, Clive H. Cannell, Mark B. |
description | Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and >50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease. |
doi_str_mv | 10.1073/pnas.1805979115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511307</jstor_id><sourcerecordid>26511307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qCBbKmROVpV64hB3HdmxfKiEELdJKHGjPlmM7Jask3trOSvvv69VSaDnNYb55mvceQhcErgkIutxMJl0TCVwJRQj_gBYEFKkapuAjWgDUopKsZifoNKU1ACgu4Rid1Eop0kC9QA9PYZizx2PY-tFPGfcTzs8e5yrP7Tx4nHYp-xGHDkfTtn3GZnKFnpPH1kTXh3EX7C779AkddWZI_vxlnqGf93c_br9Xq8dvD7c3q8oyRnMlpLHGgXWiIbKlnQMCID0VnbPStW1NKVGcOpDGWcsZI95KEIwb2gklDD1DXw-6m7kdvbPl6WgGvYn9aOJOB9Pr_zdT_6x_ha1uoOEApAhcvQjE8Hv2KeuxT9YPg5l88aVraCRlXNZ79Ms7dB3mOBV7hSoZ7kNnhVoeKBtDStF3r88Q0Pua9L4m_VZTufj8r4dX_m8vBbg8AOuUQ3zbN5wQWhT_AB_ZmPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099979114</pqid></control><display><type>article</type><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</creator><creatorcontrib>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</creatorcontrib><description>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and >50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1805979115</identifier><identifier>PMID: 29991602</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Biological Transport, Active - physiology ; Cardiomyocytes ; Cell surface ; Diffusion ; Diffusion coefficient ; Electron microscopy ; Entrances ; Finite element method ; Fluorescence ; Fluorescence recovery after photobleaching ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Male ; Membranes ; Mice ; Models, Cardiovascular ; Molecules ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Photobleaching ; PNAS Plus ; Rabbits ; Solute movement ; Solutes ; Tortuosity ; Tubules ; Ventricle</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (30), p.E7073-E7080</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 24, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</citedby><cites>FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</cites><orcidid>0000-0002-4816-0463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511307$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511307$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29991602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Cherrie H. T.</creatorcontrib><creatorcontrib>Rog-Zielinska, Eva A.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Orchard, Clive H.</creatorcontrib><creatorcontrib>Cannell, Mark B.</creatorcontrib><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and >50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biological Transport, Active - physiology</subject><subject>Cardiomyocytes</subject><subject>Cell surface</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electron microscopy</subject><subject>Entrances</subject><subject>Finite element method</subject><subject>Fluorescence</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Models, Cardiovascular</subject><subject>Molecules</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Photobleaching</subject><subject>PNAS Plus</subject><subject>Rabbits</subject><subject>Solute movement</subject><subject>Solutes</subject><subject>Tortuosity</subject><subject>Tubules</subject><subject>Ventricle</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3DAQha2qCBbKmROVpV64hB3HdmxfKiEELdJKHGjPlmM7Jask3trOSvvv69VSaDnNYb55mvceQhcErgkIutxMJl0TCVwJRQj_gBYEFKkapuAjWgDUopKsZifoNKU1ACgu4Rid1Eop0kC9QA9PYZizx2PY-tFPGfcTzs8e5yrP7Tx4nHYp-xGHDkfTtn3GZnKFnpPH1kTXh3EX7C779AkddWZI_vxlnqGf93c_br9Xq8dvD7c3q8oyRnMlpLHGgXWiIbKlnQMCID0VnbPStW1NKVGcOpDGWcsZI95KEIwb2gklDD1DXw-6m7kdvbPl6WgGvYn9aOJOB9Pr_zdT_6x_ha1uoOEApAhcvQjE8Hv2KeuxT9YPg5l88aVraCRlXNZ79Ms7dB3mOBV7hSoZ7kNnhVoeKBtDStF3r88Q0Pua9L4m_VZTufj8r4dX_m8vBbg8AOuUQ3zbN5wQWhT_AB_ZmPo</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Kong, Cherrie H. T.</creator><creator>Rog-Zielinska, Eva A.</creator><creator>Kohl, Peter</creator><creator>Orchard, Clive H.</creator><creator>Cannell, Mark B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4816-0463</orcidid></search><sort><creationdate>20180724</creationdate><title>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</title><author>Kong, Cherrie H. T. ; Rog-Zielinska, Eva A. ; Kohl, Peter ; Orchard, Clive H. ; Cannell, Mark B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-78acad0cd7618b3fd01008e37fdc8dbb2331953d08adcc5441ec80745a3f797a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biological Transport, Active - physiology</topic><topic>Cardiomyocytes</topic><topic>Cell surface</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electron microscopy</topic><topic>Entrances</topic><topic>Finite element method</topic><topic>Fluorescence</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Models, Cardiovascular</topic><topic>Molecules</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Photobleaching</topic><topic>PNAS Plus</topic><topic>Rabbits</topic><topic>Solute movement</topic><topic>Solutes</topic><topic>Tortuosity</topic><topic>Tubules</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Cherrie H. T.</creatorcontrib><creatorcontrib>Rog-Zielinska, Eva A.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Orchard, Clive H.</creatorcontrib><creatorcontrib>Cannell, Mark B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Cherrie H. T.</au><au>Rog-Zielinska, Eva A.</au><au>Kohl, Peter</au><au>Orchard, Clive H.</au><au>Cannell, Mark B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>115</volume><issue>30</issue><spage>E7073</spage><epage>E7080</epage><pages>E7073-E7080</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and >50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29991602</pmid><doi>10.1073/pnas.1805979115</doi><orcidid>https://orcid.org/0000-0002-4816-0463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (30), p.E7073-E7080 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6065001 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Biological Transport, Active - physiology Cardiomyocytes Cell surface Diffusion Diffusion coefficient Electron microscopy Entrances Finite element method Fluorescence Fluorescence recovery after photobleaching Heart Ventricles - cytology Heart Ventricles - metabolism Male Membranes Mice Models, Cardiovascular Molecules Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Photobleaching PNAS Plus Rabbits Solute movement Solutes Tortuosity Tubules Ventricle |
title | Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solute%20movement%20in%20the%20t-tubule%20system%20of%20rabbit%20and%20mouse%20cardiomyocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kong,%20Cherrie%20H.%20T.&rft.date=2018-07-24&rft.volume=115&rft.issue=30&rft.spage=E7073&rft.epage=E7080&rft.pages=E7073-E7080&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1805979115&rft_dat=%3Cjstor_pubme%3E26511307%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099979114&rft_id=info:pmid/29991602&rft_jstor_id=26511307&rfr_iscdi=true |