Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quies...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2018-09, Vol.75 (17), p.3231-3249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3249 |
---|---|
container_issue | 17 |
container_start_page | 3231 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 75 |
creator | Collins, Steven J. Tumpach, Carolin Groveman, Bradley R. Drew, Simon C. Haigh, Cathryn L. |
description | Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life. |
doi_str_mv | 10.1007/s00018-018-2790-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017547705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</originalsourceid><addsrcrecordid>eNp1UdFqFTEQDWKx9eoH-CIBn1eT7GazeRGkVVsotKCCbyGbTPam7Ca3SbbUz_CP3e29Vn0wMGSYOefMDAehV5S8pYSId5kQQrtqDSYkqeon6IQ2jFSSCPr0kLcd-36Mnud8s4B5x9pn6JhJLpolP0E_r5OPAe9SLOADNiPoOz0AdkkPE4SScYJhHnUBrO08FhxgTnrEucCEDYwjvp09ZAPBAC7bFOdhu1BsvMdTtCtxlY8OT75Es43BJr_Qnc95behg8ZerM4bhfpfgofYCHTk9Znh5-Dfo26ePX0_Pq8urzxenHy4r0whSqs5ZW7ctYxy4bAiped1L2kNt-9a10pqedFZr6RoJTNSGScdNz4Q23ElGeL1B7_e6u7mfwC4XlOUwtUt-0umHitqrfzvBb9UQ71RL2np9G_TmIJDi7Qy5qJs4p7DsrBihgjdCPIyhe5RJMecE7nECJWp1Ue1dVGusLqpV-fXfqz0yftu2ANgekJdWGCD9Gf1_1V8wg6yx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017547705</pqid></control><display><type>article</type><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</creator><creatorcontrib>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</creatorcontrib><description>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-018-2790-3</identifier><identifier>PMID: 29574582</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adult Stem Cells - metabolism ; Animals ; Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cell Biology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cleavage ; Fission ; Gene expression ; Intracellular ; Intracellular levels ; Intracellular signalling ; Life Sciences ; Mice, Knockout ; Mice, Transgenic ; Mitochondria ; Mitochondrial Dynamics ; Neural stem cells ; Neural Stem Cells - metabolism ; Neurogenesis ; Original ; Original Article ; Oxidation-Reduction ; Peptide Fragments - metabolism ; Post-translation ; Prion protein ; Prion Proteins - chemistry ; Prion Proteins - genetics ; Prion Proteins - metabolism ; Prions ; Proteins ; Reactive oxygen species ; RNA Interference ; Stem cells ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxides - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2018-09, Vol.75 (17), p.3231-3249</ispartof><rights>The Author(s) 2018</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</citedby><cites>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</cites><orcidid>0000-0002-5059-7672 ; 0000-0002-5245-6611 ; 0000-0001-7591-1149 ; 0000-0002-4851-652X ; 0000-0002-1459-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29574582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Steven J.</creatorcontrib><creatorcontrib>Tumpach, Carolin</creatorcontrib><creatorcontrib>Groveman, Bradley R.</creatorcontrib><creatorcontrib>Drew, Simon C.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</description><subject>Adult Stem Cells - metabolism</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Cleavage</subject><subject>Fission</subject><subject>Gene expression</subject><subject>Intracellular</subject><subject>Intracellular levels</subject><subject>Intracellular signalling</subject><subject>Life Sciences</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurogenesis</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Peptide Fragments - metabolism</subject><subject>Post-translation</subject><subject>Prion protein</subject><subject>Prion Proteins - chemistry</subject><subject>Prion Proteins - genetics</subject><subject>Prion Proteins - metabolism</subject><subject>Prions</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>RNA Interference</subject><subject>Stem cells</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UdFqFTEQDWKx9eoH-CIBn1eT7GazeRGkVVsotKCCbyGbTPam7Ca3SbbUz_CP3e29Vn0wMGSYOefMDAehV5S8pYSId5kQQrtqDSYkqeon6IQ2jFSSCPr0kLcd-36Mnud8s4B5x9pn6JhJLpolP0E_r5OPAe9SLOADNiPoOz0AdkkPE4SScYJhHnUBrO08FhxgTnrEucCEDYwjvp09ZAPBAC7bFOdhu1BsvMdTtCtxlY8OT75Es43BJr_Qnc95behg8ZerM4bhfpfgofYCHTk9Znh5-Dfo26ePX0_Pq8urzxenHy4r0whSqs5ZW7ctYxy4bAiped1L2kNt-9a10pqedFZr6RoJTNSGScdNz4Q23ElGeL1B7_e6u7mfwC4XlOUwtUt-0umHitqrfzvBb9UQ71RL2np9G_TmIJDi7Qy5qJs4p7DsrBihgjdCPIyhe5RJMecE7nECJWp1Ue1dVGusLqpV-fXfqz0yftu2ANgekJdWGCD9Gf1_1V8wg6yx</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Collins, Steven J.</creator><creator>Tumpach, Carolin</creator><creator>Groveman, Bradley R.</creator><creator>Drew, Simon C.</creator><creator>Haigh, Cathryn L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5059-7672</orcidid><orcidid>https://orcid.org/0000-0002-5245-6611</orcidid><orcidid>https://orcid.org/0000-0001-7591-1149</orcidid><orcidid>https://orcid.org/0000-0002-4851-652X</orcidid><orcidid>https://orcid.org/0000-0002-1459-9865</orcidid></search><sort><creationdate>20180901</creationdate><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><author>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult Stem Cells - metabolism</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Cleavage</topic><topic>Fission</topic><topic>Gene expression</topic><topic>Intracellular</topic><topic>Intracellular levels</topic><topic>Intracellular signalling</topic><topic>Life Sciences</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurogenesis</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Peptide Fragments - metabolism</topic><topic>Post-translation</topic><topic>Prion protein</topic><topic>Prion Proteins - chemistry</topic><topic>Prion Proteins - genetics</topic><topic>Prion Proteins - metabolism</topic><topic>Prions</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>RNA Interference</topic><topic>Stem cells</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Steven J.</creatorcontrib><creatorcontrib>Tumpach, Carolin</creatorcontrib><creatorcontrib>Groveman, Bradley R.</creatorcontrib><creatorcontrib>Drew, Simon C.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Steven J.</au><au>Tumpach, Carolin</au><au>Groveman, Bradley R.</au><au>Drew, Simon C.</au><au>Haigh, Cathryn L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>75</volume><issue>17</issue><spage>3231</spage><epage>3249</epage><pages>3231-3249</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29574582</pmid><doi>10.1007/s00018-018-2790-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5059-7672</orcidid><orcidid>https://orcid.org/0000-0002-5245-6611</orcidid><orcidid>https://orcid.org/0000-0001-7591-1149</orcidid><orcidid>https://orcid.org/0000-0002-4851-652X</orcidid><orcidid>https://orcid.org/0000-0002-1459-9865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2018-09, Vol.75 (17), p.3231-3249 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063333 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Adult Stem Cells - metabolism Animals Axonogenesis Biochemistry Biomedical and Life Sciences Biomedicine Brain Cell Biology Cell Differentiation Cell Proliferation Cells, Cultured Cleavage Fission Gene expression Intracellular Intracellular levels Intracellular signalling Life Sciences Mice, Knockout Mice, Transgenic Mitochondria Mitochondrial Dynamics Neural stem cells Neural Stem Cells - metabolism Neurogenesis Original Original Article Oxidation-Reduction Peptide Fragments - metabolism Post-translation Prion protein Prion Proteins - chemistry Prion Proteins - genetics Prion Proteins - metabolism Prions Proteins Reactive oxygen species RNA Interference Stem cells Superoxide dismutase Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Superoxides - metabolism |
title | Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prion%20protein%20cleavage%20fragments%20regulate%20adult%20neural%20stem%20cell%20quiescence%20through%20redox%20modulation%20of%20mitochondrial%20fission%20and%20SOD2%20expression&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Collins,%20Steven%20J.&rft.date=2018-09-01&rft.volume=75&rft.issue=17&rft.spage=3231&rft.epage=3249&rft.pages=3231-3249&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-018-2790-3&rft_dat=%3Cproquest_pubme%3E2017547705%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017547705&rft_id=info:pmid/29574582&rfr_iscdi=true |