Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression

Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2018-09, Vol.75 (17), p.3231-3249
Hauptverfasser: Collins, Steven J., Tumpach, Carolin, Groveman, Bradley R., Drew, Simon C., Haigh, Cathryn L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3249
container_issue 17
container_start_page 3231
container_title Cellular and molecular life sciences : CMLS
container_volume 75
creator Collins, Steven J.
Tumpach, Carolin
Groveman, Bradley R.
Drew, Simon C.
Haigh, Cathryn L.
description Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
doi_str_mv 10.1007/s00018-018-2790-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017547705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</originalsourceid><addsrcrecordid>eNp1UdFqFTEQDWKx9eoH-CIBn1eT7GazeRGkVVsotKCCbyGbTPam7Ca3SbbUz_CP3e29Vn0wMGSYOefMDAehV5S8pYSId5kQQrtqDSYkqeon6IQ2jFSSCPr0kLcd-36Mnud8s4B5x9pn6JhJLpolP0E_r5OPAe9SLOADNiPoOz0AdkkPE4SScYJhHnUBrO08FhxgTnrEucCEDYwjvp09ZAPBAC7bFOdhu1BsvMdTtCtxlY8OT75Es43BJr_Qnc95behg8ZerM4bhfpfgofYCHTk9Znh5-Dfo26ePX0_Pq8urzxenHy4r0whSqs5ZW7ctYxy4bAiped1L2kNt-9a10pqedFZr6RoJTNSGScdNz4Q23ElGeL1B7_e6u7mfwC4XlOUwtUt-0umHitqrfzvBb9UQ71RL2np9G_TmIJDi7Qy5qJs4p7DsrBihgjdCPIyhe5RJMecE7nECJWp1Ue1dVGusLqpV-fXfqz0yftu2ANgekJdWGCD9Gf1_1V8wg6yx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017547705</pqid></control><display><type>article</type><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</creator><creatorcontrib>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</creatorcontrib><description>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-018-2790-3</identifier><identifier>PMID: 29574582</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adult Stem Cells - metabolism ; Animals ; Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cell Biology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cleavage ; Fission ; Gene expression ; Intracellular ; Intracellular levels ; Intracellular signalling ; Life Sciences ; Mice, Knockout ; Mice, Transgenic ; Mitochondria ; Mitochondrial Dynamics ; Neural stem cells ; Neural Stem Cells - metabolism ; Neurogenesis ; Original ; Original Article ; Oxidation-Reduction ; Peptide Fragments - metabolism ; Post-translation ; Prion protein ; Prion Proteins - chemistry ; Prion Proteins - genetics ; Prion Proteins - metabolism ; Prions ; Proteins ; Reactive oxygen species ; RNA Interference ; Stem cells ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxides - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2018-09, Vol.75 (17), p.3231-3249</ispartof><rights>The Author(s) 2018</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</citedby><cites>FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</cites><orcidid>0000-0002-5059-7672 ; 0000-0002-5245-6611 ; 0000-0001-7591-1149 ; 0000-0002-4851-652X ; 0000-0002-1459-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29574582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Steven J.</creatorcontrib><creatorcontrib>Tumpach, Carolin</creatorcontrib><creatorcontrib>Groveman, Bradley R.</creatorcontrib><creatorcontrib>Drew, Simon C.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</description><subject>Adult Stem Cells - metabolism</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Cleavage</subject><subject>Fission</subject><subject>Gene expression</subject><subject>Intracellular</subject><subject>Intracellular levels</subject><subject>Intracellular signalling</subject><subject>Life Sciences</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurogenesis</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Peptide Fragments - metabolism</subject><subject>Post-translation</subject><subject>Prion protein</subject><subject>Prion Proteins - chemistry</subject><subject>Prion Proteins - genetics</subject><subject>Prion Proteins - metabolism</subject><subject>Prions</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>RNA Interference</subject><subject>Stem cells</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UdFqFTEQDWKx9eoH-CIBn1eT7GazeRGkVVsotKCCbyGbTPam7Ca3SbbUz_CP3e29Vn0wMGSYOefMDAehV5S8pYSId5kQQrtqDSYkqeon6IQ2jFSSCPr0kLcd-36Mnud8s4B5x9pn6JhJLpolP0E_r5OPAe9SLOADNiPoOz0AdkkPE4SScYJhHnUBrO08FhxgTnrEucCEDYwjvp09ZAPBAC7bFOdhu1BsvMdTtCtxlY8OT75Es43BJr_Qnc95behg8ZerM4bhfpfgofYCHTk9Znh5-Dfo26ePX0_Pq8urzxenHy4r0whSqs5ZW7ctYxy4bAiped1L2kNt-9a10pqedFZr6RoJTNSGScdNz4Q23ElGeL1B7_e6u7mfwC4XlOUwtUt-0umHitqrfzvBb9UQ71RL2np9G_TmIJDi7Qy5qJs4p7DsrBihgjdCPIyhe5RJMecE7nECJWp1Ue1dVGusLqpV-fXfqz0yftu2ANgekJdWGCD9Gf1_1V8wg6yx</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Collins, Steven J.</creator><creator>Tumpach, Carolin</creator><creator>Groveman, Bradley R.</creator><creator>Drew, Simon C.</creator><creator>Haigh, Cathryn L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5059-7672</orcidid><orcidid>https://orcid.org/0000-0002-5245-6611</orcidid><orcidid>https://orcid.org/0000-0001-7591-1149</orcidid><orcidid>https://orcid.org/0000-0002-4851-652X</orcidid><orcidid>https://orcid.org/0000-0002-1459-9865</orcidid></search><sort><creationdate>20180901</creationdate><title>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</title><author>Collins, Steven J. ; Tumpach, Carolin ; Groveman, Bradley R. ; Drew, Simon C. ; Haigh, Cathryn L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-8fdd366225e59400353b91be3db6f69dcb08daa9f49e273c29f5cb27ac5f92053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult Stem Cells - metabolism</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Cleavage</topic><topic>Fission</topic><topic>Gene expression</topic><topic>Intracellular</topic><topic>Intracellular levels</topic><topic>Intracellular signalling</topic><topic>Life Sciences</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurogenesis</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Peptide Fragments - metabolism</topic><topic>Post-translation</topic><topic>Prion protein</topic><topic>Prion Proteins - chemistry</topic><topic>Prion Proteins - genetics</topic><topic>Prion Proteins - metabolism</topic><topic>Prions</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>RNA Interference</topic><topic>Stem cells</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Steven J.</creatorcontrib><creatorcontrib>Tumpach, Carolin</creatorcontrib><creatorcontrib>Groveman, Bradley R.</creatorcontrib><creatorcontrib>Drew, Simon C.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Steven J.</au><au>Tumpach, Carolin</au><au>Groveman, Bradley R.</au><au>Drew, Simon C.</au><au>Haigh, Cathryn L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>75</volume><issue>17</issue><spage>3231</spage><epage>3249</epage><pages>3231-3249</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29574582</pmid><doi>10.1007/s00018-018-2790-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5059-7672</orcidid><orcidid>https://orcid.org/0000-0002-5245-6611</orcidid><orcidid>https://orcid.org/0000-0001-7591-1149</orcidid><orcidid>https://orcid.org/0000-0002-4851-652X</orcidid><orcidid>https://orcid.org/0000-0002-1459-9865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2018-09, Vol.75 (17), p.3231-3249
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063333
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Adult Stem Cells - metabolism
Animals
Axonogenesis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Brain
Cell Biology
Cell Differentiation
Cell Proliferation
Cells, Cultured
Cleavage
Fission
Gene expression
Intracellular
Intracellular levels
Intracellular signalling
Life Sciences
Mice, Knockout
Mice, Transgenic
Mitochondria
Mitochondrial Dynamics
Neural stem cells
Neural Stem Cells - metabolism
Neurogenesis
Original
Original Article
Oxidation-Reduction
Peptide Fragments - metabolism
Post-translation
Prion protein
Prion Proteins - chemistry
Prion Proteins - genetics
Prion Proteins - metabolism
Prions
Proteins
Reactive oxygen species
RNA Interference
Stem cells
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxides - metabolism
title Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prion%20protein%20cleavage%20fragments%20regulate%20adult%20neural%20stem%20cell%20quiescence%20through%20redox%20modulation%20of%20mitochondrial%20fission%20and%20SOD2%20expression&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Collins,%20Steven%20J.&rft.date=2018-09-01&rft.volume=75&rft.issue=17&rft.spage=3231&rft.epage=3249&rft.pages=3231-3249&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-018-2790-3&rft_dat=%3Cproquest_pubme%3E2017547705%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017547705&rft_id=info:pmid/29574582&rfr_iscdi=true