Ultrafast laser-scanning time-stretch imaging at visible wavelengths
Optical time-stretch imaging enables the continuous capture of non-repetitive events in real time at a line-scan rate of tens of MHz—a distinct advantage for the ultrafast dynamics monitoring and high-throughput screening that are widely needed in biological microscopy. However, its potential is lim...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2017-01, Vol.6 (1), p.e16196-e16196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical time-stretch imaging enables the continuous capture of non-repetitive events in real time at a line-scan rate of tens of MHz—a distinct advantage for the ultrafast dynamics monitoring and high-throughput screening that are widely needed in biological microscopy. However, its potential is limited by the technical challenge of achieving significant pulse stretching (that is, high temporal dispersion) and low optical loss, which are the critical factors influencing imaging quality, in the visible spectrum demanded in many of these applications. We present a new pulse-stretching technique, termed free-space angular-chirp-enhanced delay (FACED), with three distinguishing features absent in the prevailing dispersive-fiber-based implementations: (1) it generates substantial, reconfigurable temporal dispersion in free space (>1 ns nm
−1
) with low intrinsic loss ( |
---|---|
ISSN: | 2047-7538 2095-5545 2047-7538 |
DOI: | 10.1038/lsa.2016.196 |