Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry
Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicat...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2018-08, Vol.29 (8), p.1721-1737 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1737 |
---|---|
container_issue | 8 |
container_start_page | 1721 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 29 |
creator | Alves, Gelio Wang, Guanghui Ogurtsov, Aleksey Y. Drake, Steven K. Gucek, Marjan Sacks, David B. Yu, Yi-Kuo |
description | Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple “fingerprinting”; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e.,
E
values for identified peptides and unified
E
values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html
.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-018-1986-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6061032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050193925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-67d26515728b2ebd9464839e45c8e2ad905ce22ded7e190ed8377a7092a8f7f23</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEoqXwAGyQJTZsAv5JYnuDVI0ordQRUqesLY99k3GV2IPtFM2L8Lz1dEoLSKxs-X7nXN97quotwR8JxvxTIox1pMZE1ESKrt49q46J4LImhLLn5Y6bpsYMt0fVq5RuMCYcS_6yOqJScIaJPK5-Xemts2gx6pRc74zOLnikvUUXFnx-ego9Ws5jdtsR0NKZGEIctHdpSuinyxt0aswcdQa0ykWQctGNaOUGf2_hDaBbp9G5Gzb1FaQwzveu16UTTGhZuqPVFkyOYYIcd6-rF70eE7x5OE-q72dfrhfn9eW3rxeL08vaNBznuuOWdi1pORVrCmsrm64RTELTGgFUW4lbA5RasByIxGAF41yXJVAtet5TdlJ9Pvhu5_UE1pSRox7VNrpJx50K2qm_K95t1BBuVYc7gtne4MODQQw_ZkhZTS4ZGEftIcxJUdwS3AlOm4K-_we9CXP0Zbw9VdJgkraFIgeqrDilCP3jZwhW-9TVIXVVUlf71NWuaN79OcWj4nfMBaAHIJWSHyA-tf6_6x1_17xK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050193925</pqid></control><display><type>article</type><title>Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry</title><source>Springer Nature - Complete Springer Journals</source><creator>Alves, Gelio ; Wang, Guanghui ; Ogurtsov, Aleksey Y. ; Drake, Steven K. ; Gucek, Marjan ; Sacks, David B. ; Yu, Yi-Kuo</creator><creatorcontrib>Alves, Gelio ; Wang, Guanghui ; Ogurtsov, Aleksey Y. ; Drake, Steven K. ; Gucek, Marjan ; Sacks, David B. ; Yu, Yi-Kuo</creatorcontrib><description>Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple “fingerprinting”; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e.,
E
values for identified peptides and unified
E
values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html
.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-018-1986-y</identifier><identifier>PMID: 29873019</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Classification ; Downloading ; Fingerprinting ; Identification ; Mass spectrometry ; Microorganisms ; Morphology ; Organic Chemistry ; Peptides ; Proteomics ; Public health ; Research Article ; Samples ; Scientific imaging ; Spectroscopy ; Statistical analysis ; Statistical methods ; Statistical significance ; Workflow</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2018-08, Vol.29 (8), p.1721-1737</ispartof><rights>The Author(s) 2018</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-67d26515728b2ebd9464839e45c8e2ad905ce22ded7e190ed8377a7092a8f7f23</citedby><cites>FETCH-LOGICAL-c470t-67d26515728b2ebd9464839e45c8e2ad905ce22ded7e190ed8377a7092a8f7f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-018-1986-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-018-1986-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29873019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alves, Gelio</creatorcontrib><creatorcontrib>Wang, Guanghui</creatorcontrib><creatorcontrib>Ogurtsov, Aleksey Y.</creatorcontrib><creatorcontrib>Drake, Steven K.</creatorcontrib><creatorcontrib>Gucek, Marjan</creatorcontrib><creatorcontrib>Sacks, David B.</creatorcontrib><creatorcontrib>Yu, Yi-Kuo</creatorcontrib><title>Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple “fingerprinting”; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e.,
E
values for identified peptides and unified
E
values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html
.
Graphical Abstract
ᅟ</description><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Downloading</subject><subject>Fingerprinting</subject><subject>Identification</subject><subject>Mass spectrometry</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Organic Chemistry</subject><subject>Peptides</subject><subject>Proteomics</subject><subject>Public health</subject><subject>Research Article</subject><subject>Samples</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical significance</subject><subject>Workflow</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u1DAUhSMEoqXwAGyQJTZsAv5JYnuDVI0ordQRUqesLY99k3GV2IPtFM2L8Lz1dEoLSKxs-X7nXN97quotwR8JxvxTIox1pMZE1ESKrt49q46J4LImhLLn5Y6bpsYMt0fVq5RuMCYcS_6yOqJScIaJPK5-Xemts2gx6pRc74zOLnikvUUXFnx-ego9Ws5jdtsR0NKZGEIctHdpSuinyxt0aswcdQa0ykWQctGNaOUGf2_hDaBbp9G5Gzb1FaQwzveu16UTTGhZuqPVFkyOYYIcd6-rF70eE7x5OE-q72dfrhfn9eW3rxeL08vaNBznuuOWdi1pORVrCmsrm64RTELTGgFUW4lbA5RasByIxGAF41yXJVAtet5TdlJ9Pvhu5_UE1pSRox7VNrpJx50K2qm_K95t1BBuVYc7gtne4MODQQw_ZkhZTS4ZGEftIcxJUdwS3AlOm4K-_we9CXP0Zbw9VdJgkraFIgeqrDilCP3jZwhW-9TVIXVVUlf71NWuaN79OcWj4nfMBaAHIJWSHyA-tf6_6x1_17xK</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Alves, Gelio</creator><creator>Wang, Guanghui</creator><creator>Ogurtsov, Aleksey Y.</creator><creator>Drake, Steven K.</creator><creator>Gucek, Marjan</creator><creator>Sacks, David B.</creator><creator>Yu, Yi-Kuo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180801</creationdate><title>Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry</title><author>Alves, Gelio ; Wang, Guanghui ; Ogurtsov, Aleksey Y. ; Drake, Steven K. ; Gucek, Marjan ; Sacks, David B. ; Yu, Yi-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-67d26515728b2ebd9464839e45c8e2ad905ce22ded7e190ed8377a7092a8f7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Downloading</topic><topic>Fingerprinting</topic><topic>Identification</topic><topic>Mass spectrometry</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Organic Chemistry</topic><topic>Peptides</topic><topic>Proteomics</topic><topic>Public health</topic><topic>Research Article</topic><topic>Samples</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical significance</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Gelio</creatorcontrib><creatorcontrib>Wang, Guanghui</creatorcontrib><creatorcontrib>Ogurtsov, Aleksey Y.</creatorcontrib><creatorcontrib>Drake, Steven K.</creatorcontrib><creatorcontrib>Gucek, Marjan</creatorcontrib><creatorcontrib>Sacks, David B.</creatorcontrib><creatorcontrib>Yu, Yi-Kuo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Gelio</au><au>Wang, Guanghui</au><au>Ogurtsov, Aleksey Y.</au><au>Drake, Steven K.</au><au>Gucek, Marjan</au><au>Sacks, David B.</au><au>Yu, Yi-Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>29</volume><issue>8</issue><spage>1721</spage><epage>1737</epage><pages>1721-1737</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple “fingerprinting”; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e.,
E
values for identified peptides and unified
E
values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html
.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29873019</pmid><doi>10.1007/s13361-018-1986-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2018-08, Vol.29 (8), p.1721-1737 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6061032 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Classification Downloading Fingerprinting Identification Mass spectrometry Microorganisms Morphology Organic Chemistry Peptides Proteomics Public health Research Article Samples Scientific imaging Spectroscopy Statistical analysis Statistical methods Statistical significance Workflow |
title | Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Classification%20and%20Identification%20of%20Multiple%20Microorganisms%20with%20Accurate%20Statistical%20Significance%20via%20High-Resolution%20Tandem%20Mass%20Spectrometry&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Alves,%20Gelio&rft.date=2018-08-01&rft.volume=29&rft.issue=8&rft.spage=1721&rft.epage=1737&rft.pages=1721-1737&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-018-1986-y&rft_dat=%3Cproquest_pubme%3E2050193925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050193925&rft_id=info:pmid/29873019&rfr_iscdi=true |