Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci
Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type spec...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2017-05, Vol.26 (10), p.1942-1951 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1951 |
---|---|
container_issue | 10 |
container_start_page | 1942 |
container_title | Human molecular genetics |
container_volume | 26 |
creator | Fullard, John F Giambartolomei, Claudia Hauberg, Mads E Xu, Ke Voloudakis, Georgios Shao, Zhiping Bare, Christopher Dudley, Joel T Mattheisen, Manuel Robakis, Nikolaos K Haroutunian, Vahram Roussos, Panos |
description | Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants. |
doi_str_mv | 10.1093/hmg/ddx103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881263743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c1023e0133341dd84baee41a37999c4d2f670db8dd722087ab670be45dc3c5193</originalsourceid><addsrcrecordid>eNpVkVFrFTEQhYNY7G3riz9A8ijC2skmN7t5EaSoFQp9sc8hm2TvRrKZNdkV219vyq1Fn4Y583FmhkPIGwYfGCh-Oc2HS-d-M-AvyI4JCU0LPX9JdqCkaKQCeUrOSvkBwKTg3Sty2vac7wHUjsTbxSdqp4yzWUOiS8YxxJAOFEc6bbOpEpZ1xrz6mQ7ZVCak0edCxy3ZNWAykWaMvgqYacLUWHSPBsVO4QGXKfsUDI1owwU5GU0s_vVTPSd3Xz5_v7pubm6_frv6dNNYIcTaWAYt98A454I514vBeC-Y4Z1SygrXjrIDN_TOdW39tDND7Qcv9s5yu2eKn5OPR99lG2bvrE9rNlEvOcwm32s0Qf8_SWHSB_ylJewVk1AN3j0ZZPy5-bLqORTrYzTJ41Y063vWSt4JXtH3R9RmLCX78XkNA_0Yj67x6GM8FX7772HP6N88-B8Rd4-J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881263743</pqid></control><display><type>article</type><title>Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fullard, John F ; Giambartolomei, Claudia ; Hauberg, Mads E ; Xu, Ke ; Voloudakis, Georgios ; Shao, Zhiping ; Bare, Christopher ; Dudley, Joel T ; Mattheisen, Manuel ; Robakis, Nikolaos K ; Haroutunian, Vahram ; Roussos, Panos</creator><creatorcontrib>Fullard, John F ; Giambartolomei, Claudia ; Hauberg, Mads E ; Xu, Ke ; Voloudakis, Georgios ; Shao, Zhiping ; Bare, Christopher ; Dudley, Joel T ; Mattheisen, Manuel ; Robakis, Nikolaos K ; Haroutunian, Vahram ; Roussos, Panos</creatorcontrib><description>Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddx103</identifier><identifier>PMID: 28335009</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Brain - metabolism ; Brain Mapping - methods ; Chromatin - metabolism ; Chromatin - pathology ; Chromatin Immunoprecipitation - methods ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Enhancer Elements, Genetic - genetics ; Gene Expression - genetics ; Genome-Wide Association Study ; Humans ; Polymorphism, Single Nucleotide - genetics ; Promoter Regions, Genetic - genetics ; Promoter Regions, Genetic - physiology ; Schizophrenia - genetics ; Schizophrenia - physiopathology ; Sorting Nexins - genetics ; Sorting Nexins - metabolism ; Transcription Factors - genetics</subject><ispartof>Human molecular genetics, 2017-05, Vol.26 (10), p.1942-1951</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c1023e0133341dd84baee41a37999c4d2f670db8dd722087ab670be45dc3c5193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28335009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fullard, John F</creatorcontrib><creatorcontrib>Giambartolomei, Claudia</creatorcontrib><creatorcontrib>Hauberg, Mads E</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Voloudakis, Georgios</creatorcontrib><creatorcontrib>Shao, Zhiping</creatorcontrib><creatorcontrib>Bare, Christopher</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Robakis, Nikolaos K</creatorcontrib><creatorcontrib>Haroutunian, Vahram</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><title>Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.</description><subject>Brain - metabolism</subject><subject>Brain Mapping - methods</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - pathology</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Gene Expression - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoter Regions, Genetic - physiology</subject><subject>Schizophrenia - genetics</subject><subject>Schizophrenia - physiopathology</subject><subject>Sorting Nexins - genetics</subject><subject>Sorting Nexins - metabolism</subject><subject>Transcription Factors - genetics</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVFrFTEQhYNY7G3riz9A8ijC2skmN7t5EaSoFQp9sc8hm2TvRrKZNdkV219vyq1Fn4Y583FmhkPIGwYfGCh-Oc2HS-d-M-AvyI4JCU0LPX9JdqCkaKQCeUrOSvkBwKTg3Sty2vac7wHUjsTbxSdqp4yzWUOiS8YxxJAOFEc6bbOpEpZ1xrz6mQ7ZVCak0edCxy3ZNWAykWaMvgqYacLUWHSPBsVO4QGXKfsUDI1owwU5GU0s_vVTPSd3Xz5_v7pubm6_frv6dNNYIcTaWAYt98A454I514vBeC-Y4Z1SygrXjrIDN_TOdW39tDND7Qcv9s5yu2eKn5OPR99lG2bvrE9rNlEvOcwm32s0Qf8_SWHSB_ylJewVk1AN3j0ZZPy5-bLqORTrYzTJ41Y063vWSt4JXtH3R9RmLCX78XkNA_0Yj67x6GM8FX7772HP6N88-B8Rd4-J</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Fullard, John F</creator><creator>Giambartolomei, Claudia</creator><creator>Hauberg, Mads E</creator><creator>Xu, Ke</creator><creator>Voloudakis, Georgios</creator><creator>Shao, Zhiping</creator><creator>Bare, Christopher</creator><creator>Dudley, Joel T</creator><creator>Mattheisen, Manuel</creator><creator>Robakis, Nikolaos K</creator><creator>Haroutunian, Vahram</creator><creator>Roussos, Panos</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170515</creationdate><title>Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci</title><author>Fullard, John F ; Giambartolomei, Claudia ; Hauberg, Mads E ; Xu, Ke ; Voloudakis, Georgios ; Shao, Zhiping ; Bare, Christopher ; Dudley, Joel T ; Mattheisen, Manuel ; Robakis, Nikolaos K ; Haroutunian, Vahram ; Roussos, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c1023e0133341dd84baee41a37999c4d2f670db8dd722087ab670be45dc3c5193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain - metabolism</topic><topic>Brain Mapping - methods</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - pathology</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Gene Expression - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoter Regions, Genetic - physiology</topic><topic>Schizophrenia - genetics</topic><topic>Schizophrenia - physiopathology</topic><topic>Sorting Nexins - genetics</topic><topic>Sorting Nexins - metabolism</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fullard, John F</creatorcontrib><creatorcontrib>Giambartolomei, Claudia</creatorcontrib><creatorcontrib>Hauberg, Mads E</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Voloudakis, Georgios</creatorcontrib><creatorcontrib>Shao, Zhiping</creatorcontrib><creatorcontrib>Bare, Christopher</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Robakis, Nikolaos K</creatorcontrib><creatorcontrib>Haroutunian, Vahram</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fullard, John F</au><au>Giambartolomei, Claudia</au><au>Hauberg, Mads E</au><au>Xu, Ke</au><au>Voloudakis, Georgios</au><au>Shao, Zhiping</au><au>Bare, Christopher</au><au>Dudley, Joel T</au><au>Mattheisen, Manuel</au><au>Robakis, Nikolaos K</au><au>Haroutunian, Vahram</au><au>Roussos, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>26</volume><issue>10</issue><spage>1942</spage><epage>1951</epage><pages>1942-1951</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28335009</pmid><doi>10.1093/hmg/ddx103</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2017-05, Vol.26 (10), p.1942-1951 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059160 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Brain - metabolism Brain Mapping - methods Chromatin - metabolism Chromatin - pathology Chromatin Immunoprecipitation - methods DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology Enhancer Elements, Genetic - genetics Gene Expression - genetics Genome-Wide Association Study Humans Polymorphism, Single Nucleotide - genetics Promoter Regions, Genetic - genetics Promoter Regions, Genetic - physiology Schizophrenia - genetics Schizophrenia - physiopathology Sorting Nexins - genetics Sorting Nexins - metabolism Transcription Factors - genetics |
title | Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20chromatin%20profiling%20of%20human%20postmortem%20brain%20infers%20functional%20roles%20for%20non-coding%20schizophrenia%20loci&rft.jtitle=Human%20molecular%20genetics&rft.au=Fullard,%20John%20F&rft.date=2017-05-15&rft.volume=26&rft.issue=10&rft.spage=1942&rft.epage=1951&rft.pages=1942-1951&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddx103&rft_dat=%3Cproquest_pubme%3E1881263743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881263743&rft_id=info:pmid/28335009&rfr_iscdi=true |