Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse

Abstract Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2018-01, Vol.28 (1), p.370-386
Hauptverfasser: Bauer, Adam Q, Kraft, Andrew W, Baxter, Grant A, Wright, Patrick W, Reisman, Matthew D, Bice, Annie R, Park, Jasmine J, Bruchas, Michael R, Snyder, Abraham Z, Lee, Jin-Moo, Culver, Joseph P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 1
container_start_page 370
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 28
creator Bauer, Adam Q
Kraft, Andrew W
Baxter, Grant A
Wright, Patrick W
Reisman, Matthew D
Bice, Annie R
Park, Jasmine J
Bruchas, Michael R
Snyder, Abraham Z
Lee, Jin-Moo
Culver, Joseph P
description Abstract Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.
doi_str_mv 10.1093/cercor/bhx298
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhx298</oup_id><sourcerecordid>1964701880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-95594b91c0b0115b8afbbeb816c1dcf17b84ff86f5aa2a455a62a433951f2ba03</originalsourceid><addsrcrecordid>eNqFUcFu1DAQjRCIlsKRK_KRS6jHiZP4goS2W4rUqhJtz5bttRNDYgfbWXU_iP_Ey5ZCT5xmRu_NezN6RfEW8AfArDpVOigfTuVwT1j3rDiGusElAcae5x7XbVkRgKPiVYzfMIaWUPKyOCIMqgYIPS5-ro3RKtmtRivv3O_Wph260iIuQW_QXbSuR9dz8r12OlklxnGH1lv_PYMXevKbnROTVejG9k6MEa3vByttiujWz74PYh526MzGZJ1KyAQ_oa96P_XoJomk0fmSAevz7tMLrENp0OjKL1G_Ll6YrK3fPNST4u58fbu6KC-vP39ZfbosVd01qWSUsloyUFhiACo7YaTUsoNGwUYZaGVXG9M1hgpBRE2paHKpKkbBEClwdVJ8POjOi5z0RmmXghj5HOwkwo57YflTxNmB937LG0xbSqos8P5BIPgfS_6TTzYqPY7C6fwIB9bULYau23uVB6oKPsagzaMNYL6Plh-i5YdoM__dv7c9sv9k-dfbL_N_tH4BTyi1uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964701880</pqid></control><display><type>article</type><title>Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bauer, Adam Q ; Kraft, Andrew W ; Baxter, Grant A ; Wright, Patrick W ; Reisman, Matthew D ; Bice, Annie R ; Park, Jasmine J ; Bruchas, Michael R ; Snyder, Abraham Z ; Lee, Jin-Moo ; Culver, Joseph P</creator><creatorcontrib>Bauer, Adam Q ; Kraft, Andrew W ; Baxter, Grant A ; Wright, Patrick W ; Reisman, Matthew D ; Bice, Annie R ; Park, Jasmine J ; Bruchas, Michael R ; Snyder, Abraham Z ; Lee, Jin-Moo ; Culver, Joseph P</creatorcontrib><description>Abstract Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhx298</identifier><identifier>PMID: 29136125</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Original</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2018-01, Vol.28 (1), p.370-386</ispartof><rights>The Author 2017. Published by Oxford University Press. 2017</rights><rights>The Author 2017. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-95594b91c0b0115b8afbbeb816c1dcf17b84ff86f5aa2a455a62a433951f2ba03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29136125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Adam Q</creatorcontrib><creatorcontrib>Kraft, Andrew W</creatorcontrib><creatorcontrib>Baxter, Grant A</creatorcontrib><creatorcontrib>Wright, Patrick W</creatorcontrib><creatorcontrib>Reisman, Matthew D</creatorcontrib><creatorcontrib>Bice, Annie R</creatorcontrib><creatorcontrib>Park, Jasmine J</creatorcontrib><creatorcontrib>Bruchas, Michael R</creatorcontrib><creatorcontrib>Snyder, Abraham Z</creatorcontrib><creatorcontrib>Lee, Jin-Moo</creatorcontrib><creatorcontrib>Culver, Joseph P</creatorcontrib><title>Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.</description><subject>Original</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFUcFu1DAQjRCIlsKRK_KRS6jHiZP4goS2W4rUqhJtz5bttRNDYgfbWXU_iP_Ey5ZCT5xmRu_NezN6RfEW8AfArDpVOigfTuVwT1j3rDiGusElAcae5x7XbVkRgKPiVYzfMIaWUPKyOCIMqgYIPS5-ro3RKtmtRivv3O_Wph260iIuQW_QXbSuR9dz8r12OlklxnGH1lv_PYMXevKbnROTVejG9k6MEa3vByttiujWz74PYh526MzGZJ1KyAQ_oa96P_XoJomk0fmSAevz7tMLrENp0OjKL1G_Ll6YrK3fPNST4u58fbu6KC-vP39ZfbosVd01qWSUsloyUFhiACo7YaTUsoNGwUYZaGVXG9M1hgpBRE2paHKpKkbBEClwdVJ8POjOi5z0RmmXghj5HOwkwo57YflTxNmB937LG0xbSqos8P5BIPgfS_6TTzYqPY7C6fwIB9bULYau23uVB6oKPsagzaMNYL6Plh-i5YdoM__dv7c9sv9k-dfbL_N_tH4BTyi1uQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bauer, Adam Q</creator><creator>Kraft, Andrew W</creator><creator>Baxter, Grant A</creator><creator>Wright, Patrick W</creator><creator>Reisman, Matthew D</creator><creator>Bice, Annie R</creator><creator>Park, Jasmine J</creator><creator>Bruchas, Michael R</creator><creator>Snyder, Abraham Z</creator><creator>Lee, Jin-Moo</creator><creator>Culver, Joseph P</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse</title><author>Bauer, Adam Q ; Kraft, Andrew W ; Baxter, Grant A ; Wright, Patrick W ; Reisman, Matthew D ; Bice, Annie R ; Park, Jasmine J ; Bruchas, Michael R ; Snyder, Abraham Z ; Lee, Jin-Moo ; Culver, Joseph P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-95594b91c0b0115b8afbbeb816c1dcf17b84ff86f5aa2a455a62a433951f2ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Adam Q</creatorcontrib><creatorcontrib>Kraft, Andrew W</creatorcontrib><creatorcontrib>Baxter, Grant A</creatorcontrib><creatorcontrib>Wright, Patrick W</creatorcontrib><creatorcontrib>Reisman, Matthew D</creatorcontrib><creatorcontrib>Bice, Annie R</creatorcontrib><creatorcontrib>Park, Jasmine J</creatorcontrib><creatorcontrib>Bruchas, Michael R</creatorcontrib><creatorcontrib>Snyder, Abraham Z</creatorcontrib><creatorcontrib>Lee, Jin-Moo</creatorcontrib><creatorcontrib>Culver, Joseph P</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Adam Q</au><au>Kraft, Andrew W</au><au>Baxter, Grant A</au><au>Wright, Patrick W</au><au>Reisman, Matthew D</au><au>Bice, Annie R</au><au>Park, Jasmine J</au><au>Bruchas, Michael R</au><au>Snyder, Abraham Z</au><au>Lee, Jin-Moo</au><au>Culver, Joseph P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>28</volume><issue>1</issue><spage>370</spage><epage>386</epage><pages>370-386</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Abstract Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>29136125</pmid><doi>10.1093/cercor/bhx298</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2018-01, Vol.28 (1), p.370-386
issn 1047-3211
1460-2199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6057523
source Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Original
title Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Connectivity%20Measured%20Using%20Optogenetically%20Evoked%20Hemodynamic%20Signals%20Exhibits%20Topography%20Distinct%20from%20Resting%20State%20Functional%20Connectivity%20in%20the%20Mouse&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Bauer,%20Adam%20Q&rft.date=2018-01-01&rft.volume=28&rft.issue=1&rft.spage=370&rft.epage=386&rft.pages=370-386&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhx298&rft_dat=%3Cproquest_pubme%3E1964701880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964701880&rft_id=info:pmid/29136125&rft_oup_id=10.1093/cercor/bhx298&rfr_iscdi=true