Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical mod...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2018-07, Vol.140 (7), p.0745031-0745038 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0745038 |
---|---|
container_issue | 7 |
container_start_page | 0745031 |
container_title | Journal of biomechanical engineering |
container_volume | 140 |
creator | Ramadan, Ahmed Boss, Connor Choi, Jongeun Peter Reeves, N Cholewicki, Jacek Popovich, John M Radcliffe, Clark J |
description | Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods. |
doi_str_mv | 10.1115/1.4039677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6056202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018025553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-a0f8c086afd762a64b2657a8b50a2880df3a0f3b4d293d040ec310f2d931c4a33</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhwBkJ-QiHlPFX4lyQ2lKgUhFIC-JoOc6k6yqxt7ZTaf970u5SwWmkmZ_ee5pHyGsGJ4wx9YGdSBBt3TRPyIoprivdKvaUrIBJXUEj2BF5kfMNAGNawnNyxFvVQKP4ityucURXfLimawzZF3-H9IdNdsKCia7nLmPJ1Af6aRfs5J0d6bfY45jpb1829HS7HZdl8THQEumZjxO6jQ0P4HqXC070ssdQ_HDAXpJngx0zvjrMY_Lr88XP86_V1fcvl-enV5WVUpfKwqAd6NoOfVNzW8uO16qxulNgudbQD2JBRCd73ooeJKATDAbet4I5aYU4Jh_3utu5m7B3S4ZkR7NNfrJpZ6L15v9L8BtzHe9MDarmwBeBdweBFG9nzMVMPjscRxswztlwYBq4Uure6_0edSnmnHB4tGFg7isyzBwqWti3_-Z6JP92sgBv9oDNE5qbOKew_MmIuuGtFH8AQ8uW7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018025553</pqid></control><display><type>article</type><title>Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Ramadan, Ahmed ; Boss, Connor ; Choi, Jongeun ; Peter Reeves, N ; Cholewicki, Jacek ; Popovich, John M ; Radcliffe, Clark J</creator><creatorcontrib>Ramadan, Ahmed ; Boss, Connor ; Choi, Jongeun ; Peter Reeves, N ; Cholewicki, Jacek ; Popovich, John M ; Radcliffe, Clark J</creatorcontrib><description>Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4039677</identifier><identifier>PMID: 29570752</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Technical Brief</subject><ispartof>Journal of biomechanical engineering, 2018-07, Vol.140 (7), p.0745031-0745038</ispartof><rights>Copyright © 2018 by ASME 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-a0f8c086afd762a64b2657a8b50a2880df3a0f3b4d293d040ec310f2d931c4a33</citedby><cites>FETCH-LOGICAL-a448t-a0f8c086afd762a64b2657a8b50a2880df3a0f3b4d293d040ec310f2d931c4a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,38497</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29570752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramadan, Ahmed</creatorcontrib><creatorcontrib>Boss, Connor</creatorcontrib><creatorcontrib>Choi, Jongeun</creatorcontrib><creatorcontrib>Peter Reeves, N</creatorcontrib><creatorcontrib>Cholewicki, Jacek</creatorcontrib><creatorcontrib>Popovich, John M</creatorcontrib><creatorcontrib>Radcliffe, Clark J</creatorcontrib><title>Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.</description><subject>Technical Brief</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS0EokvhwBkJ-QiHlPFX4lyQ2lKgUhFIC-JoOc6k6yqxt7ZTaf970u5SwWmkmZ_ee5pHyGsGJ4wx9YGdSBBt3TRPyIoprivdKvaUrIBJXUEj2BF5kfMNAGNawnNyxFvVQKP4ityucURXfLimawzZF3-H9IdNdsKCia7nLmPJ1Af6aRfs5J0d6bfY45jpb1829HS7HZdl8THQEumZjxO6jQ0P4HqXC070ssdQ_HDAXpJngx0zvjrMY_Lr88XP86_V1fcvl-enV5WVUpfKwqAd6NoOfVNzW8uO16qxulNgudbQD2JBRCd73ooeJKATDAbet4I5aYU4Jh_3utu5m7B3S4ZkR7NNfrJpZ6L15v9L8BtzHe9MDarmwBeBdweBFG9nzMVMPjscRxswztlwYBq4Uure6_0edSnmnHB4tGFg7isyzBwqWti3_-Z6JP92sgBv9oDNE5qbOKew_MmIuuGtFH8AQ8uW7Q</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ramadan, Ahmed</creator><creator>Boss, Connor</creator><creator>Choi, Jongeun</creator><creator>Peter Reeves, N</creator><creator>Cholewicki, Jacek</creator><creator>Popovich, John M</creator><creator>Radcliffe, Clark J</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180701</creationdate><title>Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification</title><author>Ramadan, Ahmed ; Boss, Connor ; Choi, Jongeun ; Peter Reeves, N ; Cholewicki, Jacek ; Popovich, John M ; Radcliffe, Clark J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-a0f8c086afd762a64b2657a8b50a2880df3a0f3b4d293d040ec310f2d931c4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Technical Brief</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadan, Ahmed</creatorcontrib><creatorcontrib>Boss, Connor</creatorcontrib><creatorcontrib>Choi, Jongeun</creatorcontrib><creatorcontrib>Peter Reeves, N</creatorcontrib><creatorcontrib>Cholewicki, Jacek</creatorcontrib><creatorcontrib>Popovich, John M</creatorcontrib><creatorcontrib>Radcliffe, Clark J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadan, Ahmed</au><au>Boss, Connor</au><au>Choi, Jongeun</au><au>Peter Reeves, N</au><au>Cholewicki, Jacek</au><au>Popovich, John M</au><au>Radcliffe, Clark J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>140</volume><issue>7</issue><spage>0745031</spage><epage>0745038</epage><pages>0745031-0745038</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.</abstract><cop>United States</cop><pub>ASME</pub><pmid>29570752</pmid><doi>10.1115/1.4039677</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2018-07, Vol.140 (7), p.0745031-0745038 |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6056202 |
source | Alma/SFX Local Collection; ASME Transactions Journals (Current) |
subjects | Technical Brief |
title | Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20Sensitive%20Parameter%20Subsets%20in%20Dynamical%20Models%20With%20Application%20to%20Biomechanical%20System%20Identification&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Ramadan,%20Ahmed&rft.date=2018-07-01&rft.volume=140&rft.issue=7&rft.spage=0745031&rft.epage=0745038&rft.pages=0745031-0745038&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4039677&rft_dat=%3Cproquest_pubme%3E2018025553%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018025553&rft_id=info:pmid/29570752&rfr_iscdi=true |