Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates
Aim We performed acute and chronic studies in healthy and diet‐induced obese animals using mouse‐specific or monkey‐specific dual GLP‐1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP‐1R agonist liraglutide was u...
Gespeichert in:
Veröffentlicht in: | Diabetes, obesity & metabolism obesity & metabolism, 2018-08, Vol.20 (8), p.1836-1851 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1851 |
---|---|
container_issue | 8 |
container_start_page | 1836 |
container_title | Diabetes, obesity & metabolism |
container_volume | 20 |
creator | Elvert, Ralf Herling, Andreas W. Bossart, Martin Weiss, Tilo Zhang, Baohong Wenski, Pierre Wandschneider, Jörn Kleutsch, Sabrina Butty, Uwe Kannt, Aimo Wagner, Michael Haack, Torsten Evers, Andreas Dudda, Angela Lorenz, Martin Keil, Stefanie Larsen, Philip J. |
description | Aim
We performed acute and chronic studies in healthy and diet‐induced obese animals using mouse‐specific or monkey‐specific dual GLP‐1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP‐1R agonist liraglutide was used as comparator.
Methods
The mouse‐specific dual agonist and liraglutide were tested in lean wild type, GLP‐1R knockout and diet‐induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake.
Results
The mouse‐specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist‐treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP‐1R−/− mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey‐specific dual agonist reduced total energy intake to 60%‐70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed.
Conclusions
In DIO mice and non‐human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP‐1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
This article includes a video available at: https://vimeo.com/269278603 |
doi_str_mv | 10.1111/dom.13212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6055720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068224246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-77375109a3795cd16a4ef11d17549051775e56dd57bfed5aed00095e9fbdeed53</originalsourceid><addsrcrecordid>eNp1kU9u1DAYxSMEou3AggsgS6xYpLWdOE5YIFUDDEiDihCsLcf-MuMqsYPtdJhdj8C9uAUnwZMpFSzwxv_e-_nJL8ueEXxO0rjQbjgnBSX0QXZKyqrI06Z6OK9pXjeYnmRnIVxjjMui5o-zE9o0RV3X5Wn28_NkrbEb5CwazHfQqJug_3X7Q0-yR3LjrAnRKCTH0Tuptsh1aLX-lAQESavRarlCHhSM0fmAepA6oOhQCxY6o0ximGGUKh74rdN7tAOz2cbZ2_bOabTpJ-UCIOVs9K5_hS7TMnm8jOYGUIhTcrUQdwCHiApmr3U2ZdhOg7Ro9GaQEcKT7FEn-wBP7-ZF9vXd2y_L9_n6avVhebnOFcMNzTkvOCO4kQVvmNKkkiV0hGjCWdlgRjhnwCqtGW870EyCTh_XMGi6VkM6KBbZ6yN3nNoBtIIUXPZijuH3wkkj_r2xZis27kZUmDFOcQK8uAN4922CEMW1m7xNmQXFVU1pSVOLi-zlUaW8C8FDd_8CweLQu0i9i7n3pH3-d6R75Z-ik-DiKNiZHvb_J4k3Vx-PyN-PIb6d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068224246</pqid></control><display><type>article</type><title>Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Elvert, Ralf ; Herling, Andreas W. ; Bossart, Martin ; Weiss, Tilo ; Zhang, Baohong ; Wenski, Pierre ; Wandschneider, Jörn ; Kleutsch, Sabrina ; Butty, Uwe ; Kannt, Aimo ; Wagner, Michael ; Haack, Torsten ; Evers, Andreas ; Dudda, Angela ; Lorenz, Martin ; Keil, Stefanie ; Larsen, Philip J.</creator><creatorcontrib>Elvert, Ralf ; Herling, Andreas W. ; Bossart, Martin ; Weiss, Tilo ; Zhang, Baohong ; Wenski, Pierre ; Wandschneider, Jörn ; Kleutsch, Sabrina ; Butty, Uwe ; Kannt, Aimo ; Wagner, Michael ; Haack, Torsten ; Evers, Andreas ; Dudda, Angela ; Lorenz, Martin ; Keil, Stefanie ; Larsen, Philip J.</creatorcontrib><description>Aim
We performed acute and chronic studies in healthy and diet‐induced obese animals using mouse‐specific or monkey‐specific dual GLP‐1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP‐1R agonist liraglutide was used as comparator.
Methods
The mouse‐specific dual agonist and liraglutide were tested in lean wild type, GLP‐1R knockout and diet‐induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake.
Results
The mouse‐specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist‐treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP‐1R−/− mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey‐specific dual agonist reduced total energy intake to 60%‐70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed.
Conclusions
In DIO mice and non‐human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP‐1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
This article includes a video available at: https://vimeo.com/269278603</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.13212</identifier><identifier>PMID: 29938884</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Outbred Strains ; Appetite Depressants - administration & dosage ; Appetite Depressants - adverse effects ; Appetite Depressants - therapeutic use ; Blood glucose ; Body weight ; Body Weight - drug effects ; Body weight loss ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diet ; Diet, High-Fat - adverse effects ; diet‐induced obesity ; Dose-Response Relationship, Drug ; Drug Therapy, Combination - adverse effects ; dual agonism, energy expenditure ; Energy expenditure ; Energy intake ; Energy Intake - drug effects ; Energy Metabolism - drug effects ; Female ; Food consumption ; Food intake ; GLP‐1 ; glucagon ; Glucagon-Like Peptide-1 Receptor - agonists ; Glucagon-Like Peptide-1 Receptor - genetics ; Glucagon-Like Peptide-1 Receptor - metabolism ; Glucose ; Glucose tolerance ; Hyperglycemia - prevention & control ; Hypoglycemic Agents - administration & dosage ; Hypoglycemic Agents - adverse effects ; Hypoglycemic Agents - therapeutic use ; Insulin ; Insulin secretion ; Insulin Secretion - drug effects ; Macaca fascicularis ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; mouse ; non‐human primates ; Obesity ; Obesity - blood ; Obesity - drug therapy ; Obesity - etiology ; Obesity - metabolism ; Original ; Oxidation ; Random Allocation ; Receptors, Glucagon - agonists ; Receptors, Glucagon - metabolism ; Secretion</subject><ispartof>Diabetes, obesity & metabolism, 2018-08, Vol.20 (8), p.1836-1851</ispartof><rights>2018 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-77375109a3795cd16a4ef11d17549051775e56dd57bfed5aed00095e9fbdeed53</citedby><cites>FETCH-LOGICAL-c5092-77375109a3795cd16a4ef11d17549051775e56dd57bfed5aed00095e9fbdeed53</cites><orcidid>0000-0003-1216-307X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.13212$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.13212$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29938884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elvert, Ralf</creatorcontrib><creatorcontrib>Herling, Andreas W.</creatorcontrib><creatorcontrib>Bossart, Martin</creatorcontrib><creatorcontrib>Weiss, Tilo</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>Wenski, Pierre</creatorcontrib><creatorcontrib>Wandschneider, Jörn</creatorcontrib><creatorcontrib>Kleutsch, Sabrina</creatorcontrib><creatorcontrib>Butty, Uwe</creatorcontrib><creatorcontrib>Kannt, Aimo</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Haack, Torsten</creatorcontrib><creatorcontrib>Evers, Andreas</creatorcontrib><creatorcontrib>Dudda, Angela</creatorcontrib><creatorcontrib>Lorenz, Martin</creatorcontrib><creatorcontrib>Keil, Stefanie</creatorcontrib><creatorcontrib>Larsen, Philip J.</creatorcontrib><title>Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates</title><title>Diabetes, obesity & metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Aim
We performed acute and chronic studies in healthy and diet‐induced obese animals using mouse‐specific or monkey‐specific dual GLP‐1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP‐1R agonist liraglutide was used as comparator.
Methods
The mouse‐specific dual agonist and liraglutide were tested in lean wild type, GLP‐1R knockout and diet‐induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake.
Results
The mouse‐specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist‐treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP‐1R−/− mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey‐specific dual agonist reduced total energy intake to 60%‐70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed.
Conclusions
In DIO mice and non‐human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP‐1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
This article includes a video available at: https://vimeo.com/269278603</description><subject>Animals</subject><subject>Animals, Outbred Strains</subject><subject>Appetite Depressants - administration & dosage</subject><subject>Appetite Depressants - adverse effects</subject><subject>Appetite Depressants - therapeutic use</subject><subject>Blood glucose</subject><subject>Body weight</subject><subject>Body Weight - drug effects</subject><subject>Body weight loss</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>diet‐induced obesity</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Therapy, Combination - adverse effects</subject><subject>dual agonism, energy expenditure</subject><subject>Energy expenditure</subject><subject>Energy intake</subject><subject>Energy Intake - drug effects</subject><subject>Energy Metabolism - drug effects</subject><subject>Female</subject><subject>Food consumption</subject><subject>Food intake</subject><subject>GLP‐1</subject><subject>glucagon</subject><subject>Glucagon-Like Peptide-1 Receptor - agonists</subject><subject>Glucagon-Like Peptide-1 Receptor - genetics</subject><subject>Glucagon-Like Peptide-1 Receptor - metabolism</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Hyperglycemia - prevention & control</subject><subject>Hypoglycemic Agents - administration & dosage</subject><subject>Hypoglycemic Agents - adverse effects</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Insulin Secretion - drug effects</subject><subject>Macaca fascicularis</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mouse</subject><subject>non‐human primates</subject><subject>Obesity</subject><subject>Obesity - blood</subject><subject>Obesity - drug therapy</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Original</subject><subject>Oxidation</subject><subject>Random Allocation</subject><subject>Receptors, Glucagon - agonists</subject><subject>Receptors, Glucagon - metabolism</subject><subject>Secretion</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9u1DAYxSMEou3AggsgS6xYpLWdOE5YIFUDDEiDihCsLcf-MuMqsYPtdJhdj8C9uAUnwZMpFSzwxv_e-_nJL8ueEXxO0rjQbjgnBSX0QXZKyqrI06Z6OK9pXjeYnmRnIVxjjMui5o-zE9o0RV3X5Wn28_NkrbEb5CwazHfQqJug_3X7Q0-yR3LjrAnRKCTH0Tuptsh1aLX-lAQESavRarlCHhSM0fmAepA6oOhQCxY6o0ximGGUKh74rdN7tAOz2cbZ2_bOabTpJ-UCIOVs9K5_hS7TMnm8jOYGUIhTcrUQdwCHiApmr3U2ZdhOg7Ro9GaQEcKT7FEn-wBP7-ZF9vXd2y_L9_n6avVhebnOFcMNzTkvOCO4kQVvmNKkkiV0hGjCWdlgRjhnwCqtGW870EyCTh_XMGi6VkM6KBbZ6yN3nNoBtIIUXPZijuH3wkkj_r2xZis27kZUmDFOcQK8uAN4922CEMW1m7xNmQXFVU1pSVOLi-zlUaW8C8FDd_8CweLQu0i9i7n3pH3-d6R75Z-ik-DiKNiZHvb_J4k3Vx-PyN-PIb6d</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Elvert, Ralf</creator><creator>Herling, Andreas W.</creator><creator>Bossart, Martin</creator><creator>Weiss, Tilo</creator><creator>Zhang, Baohong</creator><creator>Wenski, Pierre</creator><creator>Wandschneider, Jörn</creator><creator>Kleutsch, Sabrina</creator><creator>Butty, Uwe</creator><creator>Kannt, Aimo</creator><creator>Wagner, Michael</creator><creator>Haack, Torsten</creator><creator>Evers, Andreas</creator><creator>Dudda, Angela</creator><creator>Lorenz, Martin</creator><creator>Keil, Stefanie</creator><creator>Larsen, Philip J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1216-307X</orcidid></search><sort><creationdate>201808</creationdate><title>Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates</title><author>Elvert, Ralf ; Herling, Andreas W. ; Bossart, Martin ; Weiss, Tilo ; Zhang, Baohong ; Wenski, Pierre ; Wandschneider, Jörn ; Kleutsch, Sabrina ; Butty, Uwe ; Kannt, Aimo ; Wagner, Michael ; Haack, Torsten ; Evers, Andreas ; Dudda, Angela ; Lorenz, Martin ; Keil, Stefanie ; Larsen, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-77375109a3795cd16a4ef11d17549051775e56dd57bfed5aed00095e9fbdeed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Outbred Strains</topic><topic>Appetite Depressants - administration & dosage</topic><topic>Appetite Depressants - adverse effects</topic><topic>Appetite Depressants - therapeutic use</topic><topic>Blood glucose</topic><topic>Body weight</topic><topic>Body Weight - drug effects</topic><topic>Body weight loss</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>diet‐induced obesity</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Therapy, Combination - adverse effects</topic><topic>dual agonism, energy expenditure</topic><topic>Energy expenditure</topic><topic>Energy intake</topic><topic>Energy Intake - drug effects</topic><topic>Energy Metabolism - drug effects</topic><topic>Female</topic><topic>Food consumption</topic><topic>Food intake</topic><topic>GLP‐1</topic><topic>glucagon</topic><topic>Glucagon-Like Peptide-1 Receptor - agonists</topic><topic>Glucagon-Like Peptide-1 Receptor - genetics</topic><topic>Glucagon-Like Peptide-1 Receptor - metabolism</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Hyperglycemia - prevention & control</topic><topic>Hypoglycemic Agents - administration & dosage</topic><topic>Hypoglycemic Agents - adverse effects</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Insulin Secretion - drug effects</topic><topic>Macaca fascicularis</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mouse</topic><topic>non‐human primates</topic><topic>Obesity</topic><topic>Obesity - blood</topic><topic>Obesity - drug therapy</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Original</topic><topic>Oxidation</topic><topic>Random Allocation</topic><topic>Receptors, Glucagon - agonists</topic><topic>Receptors, Glucagon - metabolism</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elvert, Ralf</creatorcontrib><creatorcontrib>Herling, Andreas W.</creatorcontrib><creatorcontrib>Bossart, Martin</creatorcontrib><creatorcontrib>Weiss, Tilo</creatorcontrib><creatorcontrib>Zhang, Baohong</creatorcontrib><creatorcontrib>Wenski, Pierre</creatorcontrib><creatorcontrib>Wandschneider, Jörn</creatorcontrib><creatorcontrib>Kleutsch, Sabrina</creatorcontrib><creatorcontrib>Butty, Uwe</creatorcontrib><creatorcontrib>Kannt, Aimo</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Haack, Torsten</creatorcontrib><creatorcontrib>Evers, Andreas</creatorcontrib><creatorcontrib>Dudda, Angela</creatorcontrib><creatorcontrib>Lorenz, Martin</creatorcontrib><creatorcontrib>Keil, Stefanie</creatorcontrib><creatorcontrib>Larsen, Philip J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes, obesity & metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elvert, Ralf</au><au>Herling, Andreas W.</au><au>Bossart, Martin</au><au>Weiss, Tilo</au><au>Zhang, Baohong</au><au>Wenski, Pierre</au><au>Wandschneider, Jörn</au><au>Kleutsch, Sabrina</au><au>Butty, Uwe</au><au>Kannt, Aimo</au><au>Wagner, Michael</au><au>Haack, Torsten</au><au>Evers, Andreas</au><au>Dudda, Angela</au><au>Lorenz, Martin</au><au>Keil, Stefanie</au><au>Larsen, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates</atitle><jtitle>Diabetes, obesity & metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2018-08</date><risdate>2018</risdate><volume>20</volume><issue>8</issue><spage>1836</spage><epage>1851</epage><pages>1836-1851</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>Aim
We performed acute and chronic studies in healthy and diet‐induced obese animals using mouse‐specific or monkey‐specific dual GLP‐1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP‐1R agonist liraglutide was used as comparator.
Methods
The mouse‐specific dual agonist and liraglutide were tested in lean wild type, GLP‐1R knockout and diet‐induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake.
Results
The mouse‐specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist‐treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP‐1R−/− mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey‐specific dual agonist reduced total energy intake to 60%‐70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed.
Conclusions
In DIO mice and non‐human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP‐1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
This article includes a video available at: https://vimeo.com/269278603</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>29938884</pmid><doi>10.1111/dom.13212</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1216-307X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-8902 |
ispartof | Diabetes, obesity & metabolism, 2018-08, Vol.20 (8), p.1836-1851 |
issn | 1462-8902 1463-1326 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6055720 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Animals, Outbred Strains Appetite Depressants - administration & dosage Appetite Depressants - adverse effects Appetite Depressants - therapeutic use Blood glucose Body weight Body Weight - drug effects Body weight loss Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diet Diet, High-Fat - adverse effects diet‐induced obesity Dose-Response Relationship, Drug Drug Therapy, Combination - adverse effects dual agonism, energy expenditure Energy expenditure Energy intake Energy Intake - drug effects Energy Metabolism - drug effects Female Food consumption Food intake GLP‐1 glucagon Glucagon-Like Peptide-1 Receptor - agonists Glucagon-Like Peptide-1 Receptor - genetics Glucagon-Like Peptide-1 Receptor - metabolism Glucose Glucose tolerance Hyperglycemia - prevention & control Hypoglycemic Agents - administration & dosage Hypoglycemic Agents - adverse effects Hypoglycemic Agents - therapeutic use Insulin Insulin secretion Insulin Secretion - drug effects Macaca fascicularis Male Mice, Inbred C57BL Mice, Knockout mouse non‐human primates Obesity Obesity - blood Obesity - drug therapy Obesity - etiology Obesity - metabolism Original Oxidation Random Allocation Receptors, Glucagon - agonists Receptors, Glucagon - metabolism Secretion |
title | Running on mixed fuel‐dual agonistic approach of GLP‐1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non‐human primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Running%20on%20mixed%20fuel%E2%80%90dual%20agonistic%20approach%20of%20GLP%E2%80%901%20and%20GCG%20receptors%20leads%20to%20beneficial%20impact%20on%20body%20weight%20and%20blood%20glucose%20control:%20A%20comparative%20study%20between%20mice%20and%20non%E2%80%90human%20primates&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Elvert,%20Ralf&rft.date=2018-08&rft.volume=20&rft.issue=8&rft.spage=1836&rft.epage=1851&rft.pages=1836-1851&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.13212&rft_dat=%3Cproquest_pubme%3E2068224246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068224246&rft_id=info:pmid/29938884&rfr_iscdi=true |