A shady phytoplankton paradox: when phytoplankton increases under low light

Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also importan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067
Hauptverfasser: Yamamichi, Masato, Kazama, Takehiro, Tokita, Kotaro, Katano, Izumi, Doi, Hideyuki, Yoshida, Takehito, Hairston, Nelson G., Urabe, Jotaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20181067
container_issue 1882
container_start_page 20181067
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 285
creator Yamamichi, Masato
Kazama, Takehiro
Tokita, Kotaro
Katano, Izumi
Doi, Hideyuki
Yoshida, Takehito
Hairston, Nelson G.
Urabe, Jotaro
description Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.
doi_str_mv 10.1098/rspb.2018.1067
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067655382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS1ERZfClSOKxIVLtmM7dmwOSKWiLaISiI-z5ThO4zYbp3bSNvz1eNml0JXgZFvzmzfz_BB6gWGJQYrDEIdqSQCL9OTlI7TARYlzIlnxGC1AcpKLgpF99DTGSwCQTLAnaJ8CMCwoXaCPR1lsdT1nQzuPfuh0fzX6Pht00LW_e5PdtrbfqbneBKujjdnU1zZknb_NOnfRjs_QXqO7aJ9vzwP0_eT9t-Oz_PzT6Yfjo_PccCLGnFNbg4GKF5VsRAV1WhBjo6ExFHNZ0MrQ0lKd7qYpZUVrVgBUzNom-SkZPUBvN7rDVK1sbWw_Bt2pIbiVDrPy2qmHld616sLfKA6MSsqTwOutQPDXk42jWrlobJccWj9FRaAU6aMkLRP6age99FPok71E8ZIzRgVJ1HJDmeBjDLa5XwaDWuek1jmpdU5qnVNqePm3hXv8dzAJoBsg-DkN88bZcf4z-5-yV__r-vL187sbIpjDQhAFgmIoMMNS_XDDVkow5WKcrPqFPJTfnfYTtnrEOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067655382</pqid></control><display><type>article</type><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</creator><creatorcontrib>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</creatorcontrib><description>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2018.1067</identifier><identifier>PMID: 30051833</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Abundance ; Algae ; Alternative Stable States ; Aquatic ecosystems ; Aquatic plants ; Asymmetry ; Biomass ; Chara - growth &amp; development ; Chara - radiation effects ; Competition ; Ecology ; Ecosystem ; Ecosystem assessment ; Ecosystem dynamics ; Ecosystem management ; Interspecific Interactions ; Lakes ; Light ; Light effects ; Light Environments ; Macrophytes ; Models, Theoretical ; Nutrient loading ; Nutrients ; Photosynthesis ; Phytoplankton ; Phytoplankton - growth &amp; development ; Phytoplankton - radiation effects ; Plankton ; Pollution load ; Population Density ; Population Dynamics ; Primary production ; Shading ; Shallow Lake ; Spatial heterogeneity</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jul 11, 2018</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</citedby><cites>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</cites><orcidid>0000-0002-2701-3982 ; 0000-0003-2136-3399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053936/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053936/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30051833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Kazama, Takehiro</creatorcontrib><creatorcontrib>Tokita, Kotaro</creatorcontrib><creatorcontrib>Katano, Izumi</creatorcontrib><creatorcontrib>Doi, Hideyuki</creatorcontrib><creatorcontrib>Yoshida, Takehito</creatorcontrib><creatorcontrib>Hairston, Nelson G.</creatorcontrib><creatorcontrib>Urabe, Jotaro</creatorcontrib><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</description><subject>Abundance</subject><subject>Algae</subject><subject>Alternative Stable States</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Asymmetry</subject><subject>Biomass</subject><subject>Chara - growth &amp; development</subject><subject>Chara - radiation effects</subject><subject>Competition</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Ecosystem dynamics</subject><subject>Ecosystem management</subject><subject>Interspecific Interactions</subject><subject>Lakes</subject><subject>Light</subject><subject>Light effects</subject><subject>Light Environments</subject><subject>Macrophytes</subject><subject>Models, Theoretical</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Phytoplankton - growth &amp; development</subject><subject>Phytoplankton - radiation effects</subject><subject>Plankton</subject><subject>Pollution load</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Primary production</subject><subject>Shading</subject><subject>Shallow Lake</subject><subject>Spatial heterogeneity</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS1ERZfClSOKxIVLtmM7dmwOSKWiLaISiI-z5ThO4zYbp3bSNvz1eNml0JXgZFvzmzfz_BB6gWGJQYrDEIdqSQCL9OTlI7TARYlzIlnxGC1AcpKLgpF99DTGSwCQTLAnaJ8CMCwoXaCPR1lsdT1nQzuPfuh0fzX6Pht00LW_e5PdtrbfqbneBKujjdnU1zZknb_NOnfRjs_QXqO7aJ9vzwP0_eT9t-Oz_PzT6Yfjo_PccCLGnFNbg4GKF5VsRAV1WhBjo6ExFHNZ0MrQ0lKd7qYpZUVrVgBUzNom-SkZPUBvN7rDVK1sbWw_Bt2pIbiVDrPy2qmHld616sLfKA6MSsqTwOutQPDXk42jWrlobJccWj9FRaAU6aMkLRP6age99FPok71E8ZIzRgVJ1HJDmeBjDLa5XwaDWuek1jmpdU5qnVNqePm3hXv8dzAJoBsg-DkN88bZcf4z-5-yV__r-vL187sbIpjDQhAFgmIoMMNS_XDDVkow5WKcrPqFPJTfnfYTtnrEOQ</recordid><startdate>20180704</startdate><enddate>20180704</enddate><creator>Yamamichi, Masato</creator><creator>Kazama, Takehiro</creator><creator>Tokita, Kotaro</creator><creator>Katano, Izumi</creator><creator>Doi, Hideyuki</creator><creator>Yoshida, Takehito</creator><creator>Hairston, Nelson G.</creator><creator>Urabe, Jotaro</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2701-3982</orcidid><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid></search><sort><creationdate>20180704</creationdate><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><author>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Algae</topic><topic>Alternative Stable States</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Asymmetry</topic><topic>Biomass</topic><topic>Chara - growth &amp; development</topic><topic>Chara - radiation effects</topic><topic>Competition</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Ecosystem dynamics</topic><topic>Ecosystem management</topic><topic>Interspecific Interactions</topic><topic>Lakes</topic><topic>Light</topic><topic>Light effects</topic><topic>Light Environments</topic><topic>Macrophytes</topic><topic>Models, Theoretical</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Phytoplankton - growth &amp; development</topic><topic>Phytoplankton - radiation effects</topic><topic>Plankton</topic><topic>Pollution load</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Primary production</topic><topic>Shading</topic><topic>Shallow Lake</topic><topic>Spatial heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Kazama, Takehiro</creatorcontrib><creatorcontrib>Tokita, Kotaro</creatorcontrib><creatorcontrib>Katano, Izumi</creatorcontrib><creatorcontrib>Doi, Hideyuki</creatorcontrib><creatorcontrib>Yoshida, Takehito</creatorcontrib><creatorcontrib>Hairston, Nelson G.</creatorcontrib><creatorcontrib>Urabe, Jotaro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamichi, Masato</au><au>Kazama, Takehiro</au><au>Tokita, Kotaro</au><au>Katano, Izumi</au><au>Doi, Hideyuki</au><au>Yoshida, Takehito</au><au>Hairston, Nelson G.</au><au>Urabe, Jotaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shady phytoplankton paradox: when phytoplankton increases under low light</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2018-07-04</date><risdate>2018</risdate><volume>285</volume><issue>1882</issue><spage>20181067</spage><epage>20181067</epage><pages>20181067-20181067</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>30051833</pmid><doi>10.1098/rspb.2018.1067</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-2701-3982</orcidid><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067
issn 0962-8452
1471-2954
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053936
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Abundance
Algae
Alternative Stable States
Aquatic ecosystems
Aquatic plants
Asymmetry
Biomass
Chara - growth & development
Chara - radiation effects
Competition
Ecology
Ecosystem
Ecosystem assessment
Ecosystem dynamics
Ecosystem management
Interspecific Interactions
Lakes
Light
Light effects
Light Environments
Macrophytes
Models, Theoretical
Nutrient loading
Nutrients
Photosynthesis
Phytoplankton
Phytoplankton - growth & development
Phytoplankton - radiation effects
Plankton
Pollution load
Population Density
Population Dynamics
Primary production
Shading
Shallow Lake
Spatial heterogeneity
title A shady phytoplankton paradox: when phytoplankton increases under low light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shady%20phytoplankton%20paradox:%20when%20phytoplankton%20increases%20under%20low%20light&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Yamamichi,%20Masato&rft.date=2018-07-04&rft.volume=285&rft.issue=1882&rft.spage=20181067&rft.epage=20181067&rft.pages=20181067-20181067&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2018.1067&rft_dat=%3Cproquest_pubme%3E2067655382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067655382&rft_id=info:pmid/30051833&rfr_iscdi=true