A shady phytoplankton paradox: when phytoplankton increases under low light
Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also importan...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20181067 |
---|---|
container_issue | 1882 |
container_start_page | 20181067 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 285 |
creator | Yamamichi, Masato Kazama, Takehiro Tokita, Kotaro Katano, Izumi Doi, Hideyuki Yoshida, Takehito Hairston, Nelson G. Urabe, Jotaro |
description | Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers. |
doi_str_mv | 10.1098/rspb.2018.1067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067655382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS1ERZfClSOKxIVLtmM7dmwOSKWiLaISiI-z5ThO4zYbp3bSNvz1eNml0JXgZFvzmzfz_BB6gWGJQYrDEIdqSQCL9OTlI7TARYlzIlnxGC1AcpKLgpF99DTGSwCQTLAnaJ8CMCwoXaCPR1lsdT1nQzuPfuh0fzX6Pht00LW_e5PdtrbfqbneBKujjdnU1zZknb_NOnfRjs_QXqO7aJ9vzwP0_eT9t-Oz_PzT6Yfjo_PccCLGnFNbg4GKF5VsRAV1WhBjo6ExFHNZ0MrQ0lKd7qYpZUVrVgBUzNom-SkZPUBvN7rDVK1sbWw_Bt2pIbiVDrPy2qmHld616sLfKA6MSsqTwOutQPDXk42jWrlobJccWj9FRaAU6aMkLRP6age99FPok71E8ZIzRgVJ1HJDmeBjDLa5XwaDWuek1jmpdU5qnVNqePm3hXv8dzAJoBsg-DkN88bZcf4z-5-yV__r-vL187sbIpjDQhAFgmIoMMNS_XDDVkow5WKcrPqFPJTfnfYTtnrEOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067655382</pqid></control><display><type>article</type><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</creator><creatorcontrib>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</creatorcontrib><description>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2018.1067</identifier><identifier>PMID: 30051833</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Abundance ; Algae ; Alternative Stable States ; Aquatic ecosystems ; Aquatic plants ; Asymmetry ; Biomass ; Chara - growth & development ; Chara - radiation effects ; Competition ; Ecology ; Ecosystem ; Ecosystem assessment ; Ecosystem dynamics ; Ecosystem management ; Interspecific Interactions ; Lakes ; Light ; Light effects ; Light Environments ; Macrophytes ; Models, Theoretical ; Nutrient loading ; Nutrients ; Photosynthesis ; Phytoplankton ; Phytoplankton - growth & development ; Phytoplankton - radiation effects ; Plankton ; Pollution load ; Population Density ; Population Dynamics ; Primary production ; Shading ; Shallow Lake ; Spatial heterogeneity</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jul 11, 2018</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</citedby><cites>FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</cites><orcidid>0000-0002-2701-3982 ; 0000-0003-2136-3399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053936/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053936/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30051833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Kazama, Takehiro</creatorcontrib><creatorcontrib>Tokita, Kotaro</creatorcontrib><creatorcontrib>Katano, Izumi</creatorcontrib><creatorcontrib>Doi, Hideyuki</creatorcontrib><creatorcontrib>Yoshida, Takehito</creatorcontrib><creatorcontrib>Hairston, Nelson G.</creatorcontrib><creatorcontrib>Urabe, Jotaro</creatorcontrib><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</description><subject>Abundance</subject><subject>Algae</subject><subject>Alternative Stable States</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Asymmetry</subject><subject>Biomass</subject><subject>Chara - growth & development</subject><subject>Chara - radiation effects</subject><subject>Competition</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Ecosystem dynamics</subject><subject>Ecosystem management</subject><subject>Interspecific Interactions</subject><subject>Lakes</subject><subject>Light</subject><subject>Light effects</subject><subject>Light Environments</subject><subject>Macrophytes</subject><subject>Models, Theoretical</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Phytoplankton - growth & development</subject><subject>Phytoplankton - radiation effects</subject><subject>Plankton</subject><subject>Pollution load</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Primary production</subject><subject>Shading</subject><subject>Shallow Lake</subject><subject>Spatial heterogeneity</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS1ERZfClSOKxIVLtmM7dmwOSKWiLaISiI-z5ThO4zYbp3bSNvz1eNml0JXgZFvzmzfz_BB6gWGJQYrDEIdqSQCL9OTlI7TARYlzIlnxGC1AcpKLgpF99DTGSwCQTLAnaJ8CMCwoXaCPR1lsdT1nQzuPfuh0fzX6Pht00LW_e5PdtrbfqbneBKujjdnU1zZknb_NOnfRjs_QXqO7aJ9vzwP0_eT9t-Oz_PzT6Yfjo_PccCLGnFNbg4GKF5VsRAV1WhBjo6ExFHNZ0MrQ0lKd7qYpZUVrVgBUzNom-SkZPUBvN7rDVK1sbWw_Bt2pIbiVDrPy2qmHld616sLfKA6MSsqTwOutQPDXk42jWrlobJccWj9FRaAU6aMkLRP6age99FPok71E8ZIzRgVJ1HJDmeBjDLa5XwaDWuek1jmpdU5qnVNqePm3hXv8dzAJoBsg-DkN88bZcf4z-5-yV__r-vL187sbIpjDQhAFgmIoMMNS_XDDVkow5WKcrPqFPJTfnfYTtnrEOQ</recordid><startdate>20180704</startdate><enddate>20180704</enddate><creator>Yamamichi, Masato</creator><creator>Kazama, Takehiro</creator><creator>Tokita, Kotaro</creator><creator>Katano, Izumi</creator><creator>Doi, Hideyuki</creator><creator>Yoshida, Takehito</creator><creator>Hairston, Nelson G.</creator><creator>Urabe, Jotaro</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2701-3982</orcidid><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid></search><sort><creationdate>20180704</creationdate><title>A shady phytoplankton paradox: when phytoplankton increases under low light</title><author>Yamamichi, Masato ; Kazama, Takehiro ; Tokita, Kotaro ; Katano, Izumi ; Doi, Hideyuki ; Yoshida, Takehito ; Hairston, Nelson G. ; Urabe, Jotaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-63ed0c0b64b9f8b0d45211ca0fc316943bc37e3a169cf79b3d5400b5eef962753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Algae</topic><topic>Alternative Stable States</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Asymmetry</topic><topic>Biomass</topic><topic>Chara - growth & development</topic><topic>Chara - radiation effects</topic><topic>Competition</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Ecosystem dynamics</topic><topic>Ecosystem management</topic><topic>Interspecific Interactions</topic><topic>Lakes</topic><topic>Light</topic><topic>Light effects</topic><topic>Light Environments</topic><topic>Macrophytes</topic><topic>Models, Theoretical</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Phytoplankton - growth & development</topic><topic>Phytoplankton - radiation effects</topic><topic>Plankton</topic><topic>Pollution load</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Primary production</topic><topic>Shading</topic><topic>Shallow Lake</topic><topic>Spatial heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Kazama, Takehiro</creatorcontrib><creatorcontrib>Tokita, Kotaro</creatorcontrib><creatorcontrib>Katano, Izumi</creatorcontrib><creatorcontrib>Doi, Hideyuki</creatorcontrib><creatorcontrib>Yoshida, Takehito</creatorcontrib><creatorcontrib>Hairston, Nelson G.</creatorcontrib><creatorcontrib>Urabe, Jotaro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamichi, Masato</au><au>Kazama, Takehiro</au><au>Tokita, Kotaro</au><au>Katano, Izumi</au><au>Doi, Hideyuki</au><au>Yoshida, Takehito</au><au>Hairston, Nelson G.</au><au>Urabe, Jotaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shady phytoplankton paradox: when phytoplankton increases under low light</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2018-07-04</date><risdate>2018</risdate><volume>285</volume><issue>1882</issue><spage>20181067</spage><epage>20181067</epage><pages>20181067-20181067</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>30051833</pmid><doi>10.1098/rspb.2018.1067</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-2701-3982</orcidid><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2018-07, Vol.285 (1882), p.20181067-20181067 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053936 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Abundance Algae Alternative Stable States Aquatic ecosystems Aquatic plants Asymmetry Biomass Chara - growth & development Chara - radiation effects Competition Ecology Ecosystem Ecosystem assessment Ecosystem dynamics Ecosystem management Interspecific Interactions Lakes Light Light effects Light Environments Macrophytes Models, Theoretical Nutrient loading Nutrients Photosynthesis Phytoplankton Phytoplankton - growth & development Phytoplankton - radiation effects Plankton Pollution load Population Density Population Dynamics Primary production Shading Shallow Lake Spatial heterogeneity |
title | A shady phytoplankton paradox: when phytoplankton increases under low light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shady%20phytoplankton%20paradox:%20when%20phytoplankton%20increases%20under%20low%20light&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Yamamichi,%20Masato&rft.date=2018-07-04&rft.volume=285&rft.issue=1882&rft.spage=20181067&rft.epage=20181067&rft.pages=20181067-20181067&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2018.1067&rft_dat=%3Cproquest_pubme%3E2067655382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067655382&rft_id=info:pmid/30051833&rfr_iscdi=true |