Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds

During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2018-07, Vol.177 (3), p.1267-1276
Hauptverfasser: Bastow, Emma L., de la Torre, Vanesa S. Garcia, Maclean, Andrew E., Green, Robert T., Merlot, Sylvain, Thomine, Sebastien, Balk, Janneke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 3
container_start_page 1267
container_title Plant physiology (Bethesda)
container_volume 177
creator Bastow, Emma L.
de la Torre, Vanesa S. Garcia
Maclean, Andrew E.
Green, Robert T.
Merlot, Sylvain
Thomine, Sebastien
Balk, Janneke
description During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.
doi_str_mv 10.1104/pp.18.00478
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508181</jstor_id><sourcerecordid>26508181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhxBnkIwjtMmM7iXNBWlV0W2mBigWuluOMu6mycbCTSv33TUkpHyePPI-f8ehl7CXCChHU-75foV4BqEI_YgvMpFiKTOnHbAEw1aB1ecSepXQFAChRPWVHoiy0KvJiwdwP68bQ2sjPY-j4bgiREt_YgWpe3fDPX9efLiS3XT2Xiq8j8WFP_CI2Bxtv-C6M0REPfhY0Hd9QPDSdHZruku-I6vScPfG2TfTi_jxm308_fjs5W26_bM5P1tulU6j1UtcKRKGwUk4V6NE6lRF4m0vhK6Ek2pyUF1q6kqra21oXRVVLJTMrstzn8ph9mL39WB2odtQN0bamn39qgm3Mv52u2ZvLcG1yyESpy0nwdhbs_3t2tt6auzsQWOSqLK9xYt_cD4vh50hpMIcmOWpb21EYkxGgpmW0QpjQdzPqYkgpkn9wI5i7CE3fG9TmV4QT_frvLR7Y35lNwKsZuEpTWn_6eQYaNcpbZQaeow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042748410</pqid></control><display><type>article</type><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</creator><creatorcontrib>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</creatorcontrib><description>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.00478</identifier><identifier>PMID: 29784767</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Gene Expression Regulation, Plant ; Germination - physiology ; Iron - metabolism ; Life Sciences ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Mitochondria - metabolism ; Mutation ; Plastids - metabolism ; Seedlings - genetics ; Seedlings - growth &amp; development ; Seeds - physiology ; Vacuoles - metabolism</subject><ispartof>Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.1267-1276</ispartof><rights>2018 American Society of Plant Biologists</rights><rights>2018 American Society of Plant Biologists. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 American Society of Plant Biologists. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</citedby><orcidid>0000-0002-9274-9486 ; 0000-0003-0045-1701 ; 0000-0002-2972-6927 ; 0000-0002-9352-1184 ; 0000-0003-4738-1990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508181$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508181$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29784767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02176499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastow, Emma L.</creatorcontrib><creatorcontrib>de la Torre, Vanesa S. Garcia</creatorcontrib><creatorcontrib>Maclean, Andrew E.</creatorcontrib><creatorcontrib>Green, Robert T.</creatorcontrib><creatorcontrib>Merlot, Sylvain</creatorcontrib><creatorcontrib>Thomine, Sebastien</creatorcontrib><creatorcontrib>Balk, Janneke</creatorcontrib><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination - physiology</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Mitochondria - metabolism</subject><subject>Mutation</subject><subject>Plastids - metabolism</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth &amp; development</subject><subject>Seeds - physiology</subject><subject>Vacuoles - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhxBnkIwjtMmM7iXNBWlV0W2mBigWuluOMu6mycbCTSv33TUkpHyePPI-f8ehl7CXCChHU-75foV4BqEI_YgvMpFiKTOnHbAEw1aB1ecSepXQFAChRPWVHoiy0KvJiwdwP68bQ2sjPY-j4bgiREt_YgWpe3fDPX9efLiS3XT2Xiq8j8WFP_CI2Bxtv-C6M0REPfhY0Hd9QPDSdHZruku-I6vScPfG2TfTi_jxm308_fjs5W26_bM5P1tulU6j1UtcKRKGwUk4V6NE6lRF4m0vhK6Ek2pyUF1q6kqra21oXRVVLJTMrstzn8ph9mL39WB2odtQN0bamn39qgm3Mv52u2ZvLcG1yyESpy0nwdhbs_3t2tt6auzsQWOSqLK9xYt_cD4vh50hpMIcmOWpb21EYkxGgpmW0QpjQdzPqYkgpkn9wI5i7CE3fG9TmV4QT_frvLR7Y35lNwKsZuEpTWn_6eQYaNcpbZQaeow</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Bastow, Emma L.</creator><creator>de la Torre, Vanesa S. Garcia</creator><creator>Maclean, Andrew E.</creator><creator>Green, Robert T.</creator><creator>Merlot, Sylvain</creator><creator>Thomine, Sebastien</creator><creator>Balk, Janneke</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9274-9486</orcidid><orcidid>https://orcid.org/0000-0003-0045-1701</orcidid><orcidid>https://orcid.org/0000-0002-2972-6927</orcidid><orcidid>https://orcid.org/0000-0002-9352-1184</orcidid><orcidid>https://orcid.org/0000-0003-4738-1990</orcidid></search><sort><creationdate>201807</creationdate><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><author>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination - physiology</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Mitochondria - metabolism</topic><topic>Mutation</topic><topic>Plastids - metabolism</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth &amp; development</topic><topic>Seeds - physiology</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastow, Emma L.</creatorcontrib><creatorcontrib>de la Torre, Vanesa S. Garcia</creatorcontrib><creatorcontrib>Maclean, Andrew E.</creatorcontrib><creatorcontrib>Green, Robert T.</creatorcontrib><creatorcontrib>Merlot, Sylvain</creatorcontrib><creatorcontrib>Thomine, Sebastien</creatorcontrib><creatorcontrib>Balk, Janneke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastow, Emma L.</au><au>de la Torre, Vanesa S. Garcia</au><au>Maclean, Andrew E.</au><au>Green, Robert T.</au><au>Merlot, Sylvain</au><au>Thomine, Sebastien</au><au>Balk, Janneke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2018-07</date><risdate>2018</risdate><volume>177</volume><issue>3</issue><spage>1267</spage><epage>1276</epage><pages>1267-1276</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>29784767</pmid><doi>10.1104/pp.18.00478</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9274-9486</orcidid><orcidid>https://orcid.org/0000-0003-0045-1701</orcidid><orcidid>https://orcid.org/0000-0002-2972-6927</orcidid><orcidid>https://orcid.org/0000-0002-9352-1184</orcidid><orcidid>https://orcid.org/0000-0003-4738-1990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.1267-1276
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052989
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Gene Expression Regulation, Plant
Germination - physiology
Iron - metabolism
Life Sciences
MEMBRANES, TRANSPORT, AND BIOENERGETICS
Mitochondria - metabolism
Mutation
Plastids - metabolism
Seedlings - genetics
Seedlings - growth & development
Seeds - physiology
Vacuoles - metabolism
title Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuolar%20Iron%20Stores%20Gated%20by%20NRAMP3%20and%20NRAMP4%20Are%20the%20Primary%20Source%20of%20Iron%20in%20Germinating%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bastow,%20Emma%20L.&rft.date=2018-07&rft.volume=177&rft.issue=3&rft.spage=1267&rft.epage=1276&rft.pages=1267-1276&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.00478&rft_dat=%3Cjstor_pubme%3E26508181%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042748410&rft_id=info:pmid/29784767&rft_jstor_id=26508181&rfr_iscdi=true