Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds
During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nra...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2018-07, Vol.177 (3), p.1267-1276 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1276 |
---|---|
container_issue | 3 |
container_start_page | 1267 |
container_title | Plant physiology (Bethesda) |
container_volume | 177 |
creator | Bastow, Emma L. de la Torre, Vanesa S. Garcia Maclean, Andrew E. Green, Robert T. Merlot, Sylvain Thomine, Sebastien Balk, Janneke |
description | During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria. |
doi_str_mv | 10.1104/pp.18.00478 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508181</jstor_id><sourcerecordid>26508181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhxBnkIwjtMmM7iXNBWlV0W2mBigWuluOMu6mycbCTSv33TUkpHyePPI-f8ehl7CXCChHU-75foV4BqEI_YgvMpFiKTOnHbAEw1aB1ecSepXQFAChRPWVHoiy0KvJiwdwP68bQ2sjPY-j4bgiREt_YgWpe3fDPX9efLiS3XT2Xiq8j8WFP_CI2Bxtv-C6M0REPfhY0Hd9QPDSdHZruku-I6vScPfG2TfTi_jxm308_fjs5W26_bM5P1tulU6j1UtcKRKGwUk4V6NE6lRF4m0vhK6Ek2pyUF1q6kqra21oXRVVLJTMrstzn8ph9mL39WB2odtQN0bamn39qgm3Mv52u2ZvLcG1yyESpy0nwdhbs_3t2tt6auzsQWOSqLK9xYt_cD4vh50hpMIcmOWpb21EYkxGgpmW0QpjQdzPqYkgpkn9wI5i7CE3fG9TmV4QT_frvLR7Y35lNwKsZuEpTWn_6eQYaNcpbZQaeow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042748410</pqid></control><display><type>article</type><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</creator><creatorcontrib>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</creatorcontrib><description>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.00478</identifier><identifier>PMID: 29784767</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Gene Expression Regulation, Plant ; Germination - physiology ; Iron - metabolism ; Life Sciences ; MEMBRANES, TRANSPORT, AND BIOENERGETICS ; Mitochondria - metabolism ; Mutation ; Plastids - metabolism ; Seedlings - genetics ; Seedlings - growth & development ; Seeds - physiology ; Vacuoles - metabolism</subject><ispartof>Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.1267-1276</ispartof><rights>2018 American Society of Plant Biologists</rights><rights>2018 American Society of Plant Biologists. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 American Society of Plant Biologists. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</citedby><orcidid>0000-0002-9274-9486 ; 0000-0003-0045-1701 ; 0000-0002-2972-6927 ; 0000-0002-9352-1184 ; 0000-0003-4738-1990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508181$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508181$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29784767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02176499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastow, Emma L.</creatorcontrib><creatorcontrib>de la Torre, Vanesa S. Garcia</creatorcontrib><creatorcontrib>Maclean, Andrew E.</creatorcontrib><creatorcontrib>Green, Robert T.</creatorcontrib><creatorcontrib>Merlot, Sylvain</creatorcontrib><creatorcontrib>Thomine, Sebastien</creatorcontrib><creatorcontrib>Balk, Janneke</creatorcontrib><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination - physiology</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>MEMBRANES, TRANSPORT, AND BIOENERGETICS</subject><subject>Mitochondria - metabolism</subject><subject>Mutation</subject><subject>Plastids - metabolism</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>Seeds - physiology</subject><subject>Vacuoles - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhxBnkIwjtMmM7iXNBWlV0W2mBigWuluOMu6mycbCTSv33TUkpHyePPI-f8ehl7CXCChHU-75foV4BqEI_YgvMpFiKTOnHbAEw1aB1ecSepXQFAChRPWVHoiy0KvJiwdwP68bQ2sjPY-j4bgiREt_YgWpe3fDPX9efLiS3XT2Xiq8j8WFP_CI2Bxtv-C6M0REPfhY0Hd9QPDSdHZruku-I6vScPfG2TfTi_jxm308_fjs5W26_bM5P1tulU6j1UtcKRKGwUk4V6NE6lRF4m0vhK6Ek2pyUF1q6kqra21oXRVVLJTMrstzn8ph9mL39WB2odtQN0bamn39qgm3Mv52u2ZvLcG1yyESpy0nwdhbs_3t2tt6auzsQWOSqLK9xYt_cD4vh50hpMIcmOWpb21EYkxGgpmW0QpjQdzPqYkgpkn9wI5i7CE3fG9TmV4QT_frvLR7Y35lNwKsZuEpTWn_6eQYaNcpbZQaeow</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Bastow, Emma L.</creator><creator>de la Torre, Vanesa S. Garcia</creator><creator>Maclean, Andrew E.</creator><creator>Green, Robert T.</creator><creator>Merlot, Sylvain</creator><creator>Thomine, Sebastien</creator><creator>Balk, Janneke</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9274-9486</orcidid><orcidid>https://orcid.org/0000-0003-0045-1701</orcidid><orcidid>https://orcid.org/0000-0002-2972-6927</orcidid><orcidid>https://orcid.org/0000-0002-9352-1184</orcidid><orcidid>https://orcid.org/0000-0003-4738-1990</orcidid></search><sort><creationdate>201807</creationdate><title>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</title><author>Bastow, Emma L. ; de la Torre, Vanesa S. Garcia ; Maclean, Andrew E. ; Green, Robert T. ; Merlot, Sylvain ; Thomine, Sebastien ; Balk, Janneke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4188-8d402741b4c471f1ac45e0fa632fb2431a6e4f283c9ebdfad877bd3435a256f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination - physiology</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>MEMBRANES, TRANSPORT, AND BIOENERGETICS</topic><topic>Mitochondria - metabolism</topic><topic>Mutation</topic><topic>Plastids - metabolism</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>Seeds - physiology</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastow, Emma L.</creatorcontrib><creatorcontrib>de la Torre, Vanesa S. Garcia</creatorcontrib><creatorcontrib>Maclean, Andrew E.</creatorcontrib><creatorcontrib>Green, Robert T.</creatorcontrib><creatorcontrib>Merlot, Sylvain</creatorcontrib><creatorcontrib>Thomine, Sebastien</creatorcontrib><creatorcontrib>Balk, Janneke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastow, Emma L.</au><au>de la Torre, Vanesa S. Garcia</au><au>Maclean, Andrew E.</au><au>Green, Robert T.</au><au>Merlot, Sylvain</au><au>Thomine, Sebastien</au><au>Balk, Janneke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2018-07</date><risdate>2018</risdate><volume>177</volume><issue>3</issue><spage>1267</spage><epage>1276</epage><pages>1267-1276</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>29784767</pmid><doi>10.1104/pp.18.00478</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9274-9486</orcidid><orcidid>https://orcid.org/0000-0003-0045-1701</orcidid><orcidid>https://orcid.org/0000-0002-2972-6927</orcidid><orcidid>https://orcid.org/0000-0002-9352-1184</orcidid><orcidid>https://orcid.org/0000-0003-4738-1990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.1267-1276 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052989 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Gene Expression Regulation, Plant Germination - physiology Iron - metabolism Life Sciences MEMBRANES, TRANSPORT, AND BIOENERGETICS Mitochondria - metabolism Mutation Plastids - metabolism Seedlings - genetics Seedlings - growth & development Seeds - physiology Vacuoles - metabolism |
title | Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuolar%20Iron%20Stores%20Gated%20by%20NRAMP3%20and%20NRAMP4%20Are%20the%20Primary%20Source%20of%20Iron%20in%20Germinating%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bastow,%20Emma%20L.&rft.date=2018-07&rft.volume=177&rft.issue=3&rft.spage=1267&rft.epage=1276&rft.pages=1267-1276&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.00478&rft_dat=%3Cjstor_pubme%3E26508181%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042748410&rft_id=info:pmid/29784767&rft_jstor_id=26508181&rfr_iscdi=true |