Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects
This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance d...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-07, Vol.8 (1), p.10842-10, Article 10842 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 10842 |
container_title | Scientific reports |
container_volume | 8 |
creator | Pandhi, Twinkle Kreit, Eric Aga, Roberto Fujimoto, Kiyo Sharbati, Mohammad Taghi Khademi, Samane Chang, A. Nicole Xiong, Feng Koehne, Jessica Heckman, Emily M. Estrada, David |
description | This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance decreased with increasing printing pass number (n); the lowest sheet resistance measured was 1.5 kΩ/sq. for n = 50. The role of thermal resistance (R
TH
) in power dissipation was studied using a combination of electrical breakdown thermometry and infrared (IR) imaging. A simple lumped thermal model (
Δ
T
=
P
×
R
TH
) and COMSOL Multiphysics was used to extract the total R
TH
, including interfaces. The R
TH
of AJP graphene on Kapton is ~27 times greater than that of AJP graphene on Al
2
O
3
with a corresponding breakdown current density 10 times less on Kapton versus Al
2
O
3
. |
doi_str_mv | 10.1038/s41598-018-29195-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072183766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-3753fba8e2ed43d07716a0afeeedf14baa99276b03f6355f60987a02136839b23</originalsourceid><addsrcrecordid>eNp9kctOxSAQhonRqFFfwIVp4sYNCkNpy8bEeDcmutDEHaHtVDE9UKFHc95e9HhfyGYg883PzPyEbHK2y5mo9mLOpaoo4xUFxZWkswWyCiyXFATA4o_7CtmI8ZGlI0HlXC2TFcEYAJd8ldwd99iMwTamz26CcXHwYcyMa7Nr_4IhO7Ix2sGM1rvMuuwAg4--pxc40utg3YhtdhrM8IAOs_P0DI13LinGdbLUmT7ixkdcI7cnxzeHZ_Ty6vT88OCSNhJgpKKUoqtNhYBtLlpWlrwwzHSI2HY8r41RCsqiZqIrhJRdwVRVGgZcFJVQNYg1sj_XHab1BNsG3RhMr4dgJybMtDdW_844-6Dv_bMu0jo4q5LAzodA8E9TjKOe2Nhg3xuHfho1sBJ4JcqiSOj2H_TRT4NL471RXErGpUgUzKkm7SoG7L6a4Uy_eafn3unknX73Ts9S0dbPMb5KPp1KgJgDMaXcPYbvv_-RfQUrEKXL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071550153</pqid></control><display><type>article</type><title>Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pandhi, Twinkle ; Kreit, Eric ; Aga, Roberto ; Fujimoto, Kiyo ; Sharbati, Mohammad Taghi ; Khademi, Samane ; Chang, A. Nicole ; Xiong, Feng ; Koehne, Jessica ; Heckman, Emily M. ; Estrada, David</creator><creatorcontrib>Pandhi, Twinkle ; Kreit, Eric ; Aga, Roberto ; Fujimoto, Kiyo ; Sharbati, Mohammad Taghi ; Khademi, Samane ; Chang, A. Nicole ; Xiong, Feng ; Koehne, Jessica ; Heckman, Emily M. ; Estrada, David</creatorcontrib><description>This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance decreased with increasing printing pass number (n); the lowest sheet resistance measured was 1.5 kΩ/sq. for n = 50. The role of thermal resistance (R
TH
) in power dissipation was studied using a combination of electrical breakdown thermometry and infrared (IR) imaging. A simple lumped thermal model (
Δ
T
=
P
×
R
TH
) and COMSOL Multiphysics was used to extract the total R
TH
, including interfaces. The R
TH
of AJP graphene on Kapton is ~27 times greater than that of AJP graphene on Al
2
O
3
with a corresponding breakdown current density 10 times less on Kapton versus Al
2
O
3
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-29195-y</identifier><identifier>PMID: 30022151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/301/357/918 ; 639/925/918/1052 ; Aerosols ; Aluminum oxide ; Graphene ; Humanities and Social Sciences ; Interfaces ; multidisciplinary ; Science ; Science (multidisciplinary) ; Transmission lines</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.10842-10, Article 10842</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-3753fba8e2ed43d07716a0afeeedf14baa99276b03f6355f60987a02136839b23</citedby><cites>FETCH-LOGICAL-c522t-3753fba8e2ed43d07716a0afeeedf14baa99276b03f6355f60987a02136839b23</cites><orcidid>0000-0001-8383-5182 ; 0000-0001-5894-0773 ; 0000-0001-5120-5426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30022151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandhi, Twinkle</creatorcontrib><creatorcontrib>Kreit, Eric</creatorcontrib><creatorcontrib>Aga, Roberto</creatorcontrib><creatorcontrib>Fujimoto, Kiyo</creatorcontrib><creatorcontrib>Sharbati, Mohammad Taghi</creatorcontrib><creatorcontrib>Khademi, Samane</creatorcontrib><creatorcontrib>Chang, A. Nicole</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Koehne, Jessica</creatorcontrib><creatorcontrib>Heckman, Emily M.</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><title>Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance decreased with increasing printing pass number (n); the lowest sheet resistance measured was 1.5 kΩ/sq. for n = 50. The role of thermal resistance (R
TH
) in power dissipation was studied using a combination of electrical breakdown thermometry and infrared (IR) imaging. A simple lumped thermal model (
Δ
T
=
P
×
R
TH
) and COMSOL Multiphysics was used to extract the total R
TH
, including interfaces. The R
TH
of AJP graphene on Kapton is ~27 times greater than that of AJP graphene on Al
2
O
3
with a corresponding breakdown current density 10 times less on Kapton versus Al
2
O
3
.</description><subject>140/133</subject><subject>639/301/357/918</subject><subject>639/925/918/1052</subject><subject>Aerosols</subject><subject>Aluminum oxide</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transmission lines</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOxSAQhonRqFFfwIVp4sYNCkNpy8bEeDcmutDEHaHtVDE9UKFHc95e9HhfyGYg883PzPyEbHK2y5mo9mLOpaoo4xUFxZWkswWyCiyXFATA4o_7CtmI8ZGlI0HlXC2TFcEYAJd8ldwd99iMwTamz26CcXHwYcyMa7Nr_4IhO7Ix2sGM1rvMuuwAg4--pxc40utg3YhtdhrM8IAOs_P0DI13LinGdbLUmT7ixkdcI7cnxzeHZ_Ty6vT88OCSNhJgpKKUoqtNhYBtLlpWlrwwzHSI2HY8r41RCsqiZqIrhJRdwVRVGgZcFJVQNYg1sj_XHab1BNsG3RhMr4dgJybMtDdW_844-6Dv_bMu0jo4q5LAzodA8E9TjKOe2Nhg3xuHfho1sBJ4JcqiSOj2H_TRT4NL471RXErGpUgUzKkm7SoG7L6a4Uy_eafn3unknX73Ts9S0dbPMb5KPp1KgJgDMaXcPYbvv_-RfQUrEKXL</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Pandhi, Twinkle</creator><creator>Kreit, Eric</creator><creator>Aga, Roberto</creator><creator>Fujimoto, Kiyo</creator><creator>Sharbati, Mohammad Taghi</creator><creator>Khademi, Samane</creator><creator>Chang, A. Nicole</creator><creator>Xiong, Feng</creator><creator>Koehne, Jessica</creator><creator>Heckman, Emily M.</creator><creator>Estrada, David</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8383-5182</orcidid><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0001-5120-5426</orcidid></search><sort><creationdate>20180718</creationdate><title>Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects</title><author>Pandhi, Twinkle ; Kreit, Eric ; Aga, Roberto ; Fujimoto, Kiyo ; Sharbati, Mohammad Taghi ; Khademi, Samane ; Chang, A. Nicole ; Xiong, Feng ; Koehne, Jessica ; Heckman, Emily M. ; Estrada, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-3753fba8e2ed43d07716a0afeeedf14baa99276b03f6355f60987a02136839b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>639/301/357/918</topic><topic>639/925/918/1052</topic><topic>Aerosols</topic><topic>Aluminum oxide</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandhi, Twinkle</creatorcontrib><creatorcontrib>Kreit, Eric</creatorcontrib><creatorcontrib>Aga, Roberto</creatorcontrib><creatorcontrib>Fujimoto, Kiyo</creatorcontrib><creatorcontrib>Sharbati, Mohammad Taghi</creatorcontrib><creatorcontrib>Khademi, Samane</creatorcontrib><creatorcontrib>Chang, A. Nicole</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Koehne, Jessica</creatorcontrib><creatorcontrib>Heckman, Emily M.</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandhi, Twinkle</au><au>Kreit, Eric</au><au>Aga, Roberto</au><au>Fujimoto, Kiyo</au><au>Sharbati, Mohammad Taghi</au><au>Khademi, Samane</au><au>Chang, A. Nicole</au><au>Xiong, Feng</au><au>Koehne, Jessica</au><au>Heckman, Emily M.</au><au>Estrada, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>10842</spage><epage>10</epage><pages>10842-10</pages><artnum>10842</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance decreased with increasing printing pass number (n); the lowest sheet resistance measured was 1.5 kΩ/sq. for n = 50. The role of thermal resistance (R
TH
) in power dissipation was studied using a combination of electrical breakdown thermometry and infrared (IR) imaging. A simple lumped thermal model (
Δ
T
=
P
×
R
TH
) and COMSOL Multiphysics was used to extract the total R
TH
, including interfaces. The R
TH
of AJP graphene on Kapton is ~27 times greater than that of AJP graphene on Al
2
O
3
with a corresponding breakdown current density 10 times less on Kapton versus Al
2
O
3
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30022151</pmid><doi>10.1038/s41598-018-29195-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8383-5182</orcidid><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0001-5120-5426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-07, Vol.8 (1), p.10842-10, Article 10842 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052108 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 140/133 639/301/357/918 639/925/918/1052 Aerosols Aluminum oxide Graphene Humanities and Social Sciences Interfaces multidisciplinary Science Science (multidisciplinary) Transmission lines |
title | Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Transport%20and%20Power%20Dissipation%20in%20Aerosol-Jet-Printed%20Graphene%20Interconnects&rft.jtitle=Scientific%20reports&rft.au=Pandhi,%20Twinkle&rft.date=2018-07-18&rft.volume=8&rft.issue=1&rft.spage=10842&rft.epage=10&rft.pages=10842-10&rft.artnum=10842&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-29195-y&rft_dat=%3Cproquest_pubme%3E2072183766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071550153&rft_id=info:pmid/30022151&rfr_iscdi=true |