Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure

We describe a spin wave modulator – spintronic device aimed to control spin wave propagation by an electric field. The modulator consists of a ferromagnetic film serving as a spin wave bus combined with a synthetic multiferroic comprising piezoelectric and magnetostrictive materials. Its operation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-07, Vol.8 (1), p.10867-10, Article 10867
Hauptverfasser: Balinskiy, Michael, Chavez, Andres C., Barra, Anthony, Chiang, Howard, Carman, Gregory P., Khitun, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 10867
container_title Scientific reports
container_volume 8
creator Balinskiy, Michael
Chavez, Andres C.
Barra, Anthony
Chiang, Howard
Carman, Gregory P.
Khitun, Alexander
description We describe a spin wave modulator – spintronic device aimed to control spin wave propagation by an electric field. The modulator consists of a ferromagnetic film serving as a spin wave bus combined with a synthetic multiferroic comprising piezoelectric and magnetostrictive materials. Its operation is based on the stress-mediated coupling between the piezoelectric and magnetostrictive materials. By applying an electric field to the piezoelectric layer, the stress is produced. In turn, the stress changes the direction of the easy axis in the magnetostrictive layer and affects spin wave transport. We present experimental data on a prototype consisting of a piezoelectric [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1-x) –[PbTiO 3 ] x substrate, and 30 nm layer of magnetostrictive Ni film, where the film is attached to a 30 nm thick Ni 81 Fe 19 spin wave bus. We report spin wave signal modulation in Ni 81 Fe 19 layer by an electric field applied across the piezoelectric layer. The switching between the spin wave conducting and non-conducting states is achieved by applying ±0.3 MV/m electric field. We report over 300% modulation depth detected 80 μm away from the excitation port at room temperature. The demonstration of the spin wave modulator provides a new direction for spin-based device development by utilizing an electric field for spin current control.
doi_str_mv 10.1038/s41598-018-28878-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071549482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-520aae0a266124b5261d4b191b04f9d55363ef641a991048f0c4285a5f8acbf3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qVUGUL8ABReLSS2A8sbPOBalFLSCx4gASR8txJktQ1l5sB8S3r7fLv_aAL7Y0v_dmxo-xPQ6HHCp1FAWXjSqBqxKVmqny8RPbRhCyxArx87v3FtuN8Q7ykdgI3nxlWxUAIlSwzeZzs3CUPI1kUxhscbUaXHFjHqiY-24aTfKh-GkidcWlK66eXLqllLH5NKahpxD8WpPCZNMU6Bv70psx0u7zvcOuf_-6PjkrLy5Pz09-XJRWCkilRDCGwGBdcxStxJp3ouUNb0H0TSdlVVfU14KbpuEgVA9WoJJG9srYtq922PHGdjW1S-osuRTMqFdhWJrwpL0Z9L8VN9zqhX_Qdf4CUDwbfH82CP5-opj0coiWxtE48lPUCDPkSvKZzOjBf-idn4LL260pLkUjFGYKN5QNPsZA_eswHPQ6L73JS-e89N-89GMW7b9f41Xykk4Gqg0Qc8ktKLz1_sD2D9bFoSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071549482</pqid></control><display><type>article</type><title>Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Balinskiy, Michael ; Chavez, Andres C. ; Barra, Anthony ; Chiang, Howard ; Carman, Gregory P. ; Khitun, Alexander</creator><creatorcontrib>Balinskiy, Michael ; Chavez, Andres C. ; Barra, Anthony ; Chiang, Howard ; Carman, Gregory P. ; Khitun, Alexander</creatorcontrib><description>We describe a spin wave modulator – spintronic device aimed to control spin wave propagation by an electric field. The modulator consists of a ferromagnetic film serving as a spin wave bus combined with a synthetic multiferroic comprising piezoelectric and magnetostrictive materials. Its operation is based on the stress-mediated coupling between the piezoelectric and magnetostrictive materials. By applying an electric field to the piezoelectric layer, the stress is produced. In turn, the stress changes the direction of the easy axis in the magnetostrictive layer and affects spin wave transport. We present experimental data on a prototype consisting of a piezoelectric [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1-x) –[PbTiO 3 ] x substrate, and 30 nm layer of magnetostrictive Ni film, where the film is attached to a 30 nm thick Ni 81 Fe 19 spin wave bus. We report spin wave signal modulation in Ni 81 Fe 19 layer by an electric field applied across the piezoelectric layer. The switching between the spin wave conducting and non-conducting states is achieved by applying ±0.3 MV/m electric field. We report over 300% modulation depth detected 80 μm away from the excitation port at room temperature. The demonstration of the spin wave modulator provides a new direction for spin-based device development by utilizing an electric field for spin current control.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-28878-w</identifier><identifier>PMID: 30022030</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/119/997 ; Buses ; Electric fields ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Wave propagation</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.10867-10, Article 10867</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-520aae0a266124b5261d4b191b04f9d55363ef641a991048f0c4285a5f8acbf3</citedby><cites>FETCH-LOGICAL-c540t-520aae0a266124b5261d4b191b04f9d55363ef641a991048f0c4285a5f8acbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052081/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052081/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30022030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balinskiy, Michael</creatorcontrib><creatorcontrib>Chavez, Andres C.</creatorcontrib><creatorcontrib>Barra, Anthony</creatorcontrib><creatorcontrib>Chiang, Howard</creatorcontrib><creatorcontrib>Carman, Gregory P.</creatorcontrib><creatorcontrib>Khitun, Alexander</creatorcontrib><title>Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We describe a spin wave modulator – spintronic device aimed to control spin wave propagation by an electric field. The modulator consists of a ferromagnetic film serving as a spin wave bus combined with a synthetic multiferroic comprising piezoelectric and magnetostrictive materials. Its operation is based on the stress-mediated coupling between the piezoelectric and magnetostrictive materials. By applying an electric field to the piezoelectric layer, the stress is produced. In turn, the stress changes the direction of the easy axis in the magnetostrictive layer and affects spin wave transport. We present experimental data on a prototype consisting of a piezoelectric [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1-x) –[PbTiO 3 ] x substrate, and 30 nm layer of magnetostrictive Ni film, where the film is attached to a 30 nm thick Ni 81 Fe 19 spin wave bus. We report spin wave signal modulation in Ni 81 Fe 19 layer by an electric field applied across the piezoelectric layer. The switching between the spin wave conducting and non-conducting states is achieved by applying ±0.3 MV/m electric field. We report over 300% modulation depth detected 80 μm away from the excitation port at room temperature. The demonstration of the spin wave modulator provides a new direction for spin-based device development by utilizing an electric field for spin current control.</description><subject>639/166/987</subject><subject>639/301/119/997</subject><subject>Buses</subject><subject>Electric fields</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Wave propagation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9P3DAQxa2qVUGUL8ABReLSS2A8sbPOBalFLSCx4gASR8txJktQ1l5sB8S3r7fLv_aAL7Y0v_dmxo-xPQ6HHCp1FAWXjSqBqxKVmqny8RPbRhCyxArx87v3FtuN8Q7ykdgI3nxlWxUAIlSwzeZzs3CUPI1kUxhscbUaXHFjHqiY-24aTfKh-GkidcWlK66eXLqllLH5NKahpxD8WpPCZNMU6Bv70psx0u7zvcOuf_-6PjkrLy5Pz09-XJRWCkilRDCGwGBdcxStxJp3ouUNb0H0TSdlVVfU14KbpuEgVA9WoJJG9srYtq922PHGdjW1S-osuRTMqFdhWJrwpL0Z9L8VN9zqhX_Qdf4CUDwbfH82CP5-opj0coiWxtE48lPUCDPkSvKZzOjBf-idn4LL260pLkUjFGYKN5QNPsZA_eswHPQ6L73JS-e89N-89GMW7b9f41Xykk4Gqg0Qc8ktKLz1_sD2D9bFoSc</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Balinskiy, Michael</creator><creator>Chavez, Andres C.</creator><creator>Barra, Anthony</creator><creator>Chiang, Howard</creator><creator>Carman, Gregory P.</creator><creator>Khitun, Alexander</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180718</creationdate><title>Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure</title><author>Balinskiy, Michael ; Chavez, Andres C. ; Barra, Anthony ; Chiang, Howard ; Carman, Gregory P. ; Khitun, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-520aae0a266124b5261d4b191b04f9d55363ef641a991048f0c4285a5f8acbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/987</topic><topic>639/301/119/997</topic><topic>Buses</topic><topic>Electric fields</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balinskiy, Michael</creatorcontrib><creatorcontrib>Chavez, Andres C.</creatorcontrib><creatorcontrib>Barra, Anthony</creatorcontrib><creatorcontrib>Chiang, Howard</creatorcontrib><creatorcontrib>Carman, Gregory P.</creatorcontrib><creatorcontrib>Khitun, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balinskiy, Michael</au><au>Chavez, Andres C.</au><au>Barra, Anthony</au><au>Chiang, Howard</au><au>Carman, Gregory P.</au><au>Khitun, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>10867</spage><epage>10</epage><pages>10867-10</pages><artnum>10867</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We describe a spin wave modulator – spintronic device aimed to control spin wave propagation by an electric field. The modulator consists of a ferromagnetic film serving as a spin wave bus combined with a synthetic multiferroic comprising piezoelectric and magnetostrictive materials. Its operation is based on the stress-mediated coupling between the piezoelectric and magnetostrictive materials. By applying an electric field to the piezoelectric layer, the stress is produced. In turn, the stress changes the direction of the easy axis in the magnetostrictive layer and affects spin wave transport. We present experimental data on a prototype consisting of a piezoelectric [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1-x) –[PbTiO 3 ] x substrate, and 30 nm layer of magnetostrictive Ni film, where the film is attached to a 30 nm thick Ni 81 Fe 19 spin wave bus. We report spin wave signal modulation in Ni 81 Fe 19 layer by an electric field applied across the piezoelectric layer. The switching between the spin wave conducting and non-conducting states is achieved by applying ±0.3 MV/m electric field. We report over 300% modulation depth detected 80 μm away from the excitation port at room temperature. The demonstration of the spin wave modulator provides a new direction for spin-based device development by utilizing an electric field for spin current control.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30022030</pmid><doi>10.1038/s41598-018-28878-w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-07, Vol.8 (1), p.10867-10, Article 10867
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6052081
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/166/987
639/301/119/997
Buses
Electric fields
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Wave propagation
title Magnetoelectric Spin Wave Modulator Based On Synthetic Multiferroic Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoelectric%20Spin%20Wave%20Modulator%20Based%20On%20Synthetic%20Multiferroic%20Structure&rft.jtitle=Scientific%20reports&rft.au=Balinskiy,%20Michael&rft.date=2018-07-18&rft.volume=8&rft.issue=1&rft.spage=10867&rft.epage=10&rft.pages=10867-10&rft.artnum=10867&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-28878-w&rft_dat=%3Cproquest_pubme%3E2071549482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071549482&rft_id=info:pmid/30022030&rfr_iscdi=true