Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise

We investigated the safety and efficacy of the addition of a trust index to enhanced Model Predictive Control (eMPC) Artificial Pancreas (AP) that works by adjusting the responsiveness of the controller's insulin delivery based on the confidence intervals around predictions of glucose trends. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes technology & therapeutics 2018-07, Vol.20 (7), p.455-464
Hauptverfasser: Pinsker, Jordan E, Laguna Sanz, Alejandro J, Lee, Joon Bok, Church, Mei Mei, Andre, Camille, Lindsey, Laura E, Doyle, 3rd, Francis J, Dassau, Eyal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 7
container_start_page 455
container_title Diabetes technology & therapeutics
container_volume 20
creator Pinsker, Jordan E
Laguna Sanz, Alejandro J
Lee, Joon Bok
Church, Mei Mei
Andre, Camille
Lindsey, Laura E
Doyle, 3rd, Francis J
Dassau, Eyal
description We investigated the safety and efficacy of the addition of a trust index to enhanced Model Predictive Control (eMPC) Artificial Pancreas (AP) that works by adjusting the responsiveness of the controller's insulin delivery based on the confidence intervals around predictions of glucose trends. This constitutes a dynamic adaptation of the controller's parameters in contrast with the widespread AP implementation of individualized fixed controller tuning. After 1 week of sensor-augmented pump (SAP) use, subjects completed a 48-h AP admission that included three meals/day (carbohydrate range 29-57 g/meal), a 1-h unannounced brisk walk, and two overnight periods. Endpoints included sensor glucose percentage time 70-180, 180 mg/dL, number of hypoglycemic events, and assessment of the trust index versus standard eMPC glucose predictions. Baseline characteristics for the 15 subjects who completed the study (mean ± SD) were age 46.1 ± 17.8 years, HbA1c 7.2% ± 1.0%, diabetes duration 26.8 ± 17.6 years, and total daily dose (TDD) 35.5 ± 16.4 U/day. Mean sensor glucose percent time 70-180 mg/dL (88.0% ± 8.0% vs. 74.6% ± 9.4%),
doi_str_mv 10.1089/dia.2018.0031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6049959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062832205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-ebd7e58898189bc1c157dd7ceb65ff6af01c13f591fc0bdfdee55e8636ae1d33</originalsourceid><addsrcrecordid>eNpdkUtvEzEURi0EoqWwZIsssWEzwY94xt4gVVEolVq1i7C2PPY1cTWxiz0Tyl_gV-MhJaKs_LjHR_f6Q-gtJQtKpProglkwQuWCEE6foVMqRNdIofjzec9Io6hoT9CrUu4IIR1n9CU6YUoJSRg_Rb_WezNMZgwp4uSxifg8j8EHG8yAb020GUzBP8K4xeu4rWdw-Do5qMUMLtgx7AGvUhxzGuprhw2-GCabChyBat7kqYz4Mjp4OLi-RhNjmv7o1g-QbSjwGr3wZijw5nE9Q5vP683qS3N1c3G5Or9q7JKKsYHedSCkVJJK1Vtqqeic6yz0rfC-NZ7UK-6Fot6S3nkHIATIlrcGqOP8DH06aO-nfgfOQu3dDPo-h53JP3UyQT-txLDV39Jet2RZv01VwYdHQU7fJyij3oViYRhMhDQVzUjLJGeMiIq-_w-9S1OOdbqZooKqli0r1Rwom1MpGfyxGUr0HLKuIes5ZD2HXPl3_05wpP-myn8D3uCmKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061519624</pqid></control><display><type>article</type><title>Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Pinsker, Jordan E ; Laguna Sanz, Alejandro J ; Lee, Joon Bok ; Church, Mei Mei ; Andre, Camille ; Lindsey, Laura E ; Doyle, 3rd, Francis J ; Dassau, Eyal</creator><creatorcontrib>Pinsker, Jordan E ; Laguna Sanz, Alejandro J ; Lee, Joon Bok ; Church, Mei Mei ; Andre, Camille ; Lindsey, Laura E ; Doyle, 3rd, Francis J ; Dassau, Eyal</creatorcontrib><description>We investigated the safety and efficacy of the addition of a trust index to enhanced Model Predictive Control (eMPC) Artificial Pancreas (AP) that works by adjusting the responsiveness of the controller's insulin delivery based on the confidence intervals around predictions of glucose trends. This constitutes a dynamic adaptation of the controller's parameters in contrast with the widespread AP implementation of individualized fixed controller tuning. After 1 week of sensor-augmented pump (SAP) use, subjects completed a 48-h AP admission that included three meals/day (carbohydrate range 29-57 g/meal), a 1-h unannounced brisk walk, and two overnight periods. Endpoints included sensor glucose percentage time 70-180, &lt;70, &gt;180 mg/dL, number of hypoglycemic events, and assessment of the trust index versus standard eMPC glucose predictions. Baseline characteristics for the 15 subjects who completed the study (mean ± SD) were age 46.1 ± 17.8 years, HbA1c 7.2% ± 1.0%, diabetes duration 26.8 ± 17.6 years, and total daily dose (TDD) 35.5 ± 16.4 U/day. Mean sensor glucose percent time 70-180 mg/dL (88.0% ± 8.0% vs. 74.6% ± 9.4%), &lt;70 mg/dL (1.5% ± 1.9% vs. 7.8% ± 6.0%), and number of hypoglycemic events (0.6 ± 0.6 vs. 6.3 ± 3.4), all showed statistically significant improvement during AP use compared with the SAP run-in (P &lt; 0.001). On average, the trust index enhanced controller responsiveness to predicted hyper- and hypoglycemia by 26% (P &lt; 0.005). In this population of well-controlled patients, we conclude that eMPC with trust index AP achieved nearly 90% time in the target glucose range. Additional studies will further validate these results.</description><identifier>ISSN: 1520-9156</identifier><identifier>EISSN: 1557-8593</identifier><identifier>DOI: 10.1089/dia.2018.0031</identifier><identifier>PMID: 29958023</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adult ; Blood Glucose - analysis ; Blood Glucose Self-Monitoring ; Diabetes ; Diabetes Mellitus, Type 1 - blood ; Diabetes Mellitus, Type 1 - drug therapy ; Exercise ; Female ; Glucose ; Humans ; Hyperglycemia ; Hypoglycemia ; Hypoglycemia - blood ; Hypoglycemia - diagnosis ; Hypoglycemic Agents - therapeutic use ; Insulin ; Insulin - therapeutic use ; Insulin Infusion Systems ; Male ; Middle Aged ; Original ; Pancreas, Artificial ; Sensors</subject><ispartof>Diabetes technology &amp; therapeutics, 2018-07, Vol.20 (7), p.455-464</ispartof><rights>(©) Copyright 2018, Mary Ann Liebert, Inc.</rights><rights>Copyright 2018, Mary Ann Liebert, Inc. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-ebd7e58898189bc1c157dd7ceb65ff6af01c13f591fc0bdfdee55e8636ae1d33</citedby><cites>FETCH-LOGICAL-c415t-ebd7e58898189bc1c157dd7ceb65ff6af01c13f591fc0bdfdee55e8636ae1d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29958023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinsker, Jordan E</creatorcontrib><creatorcontrib>Laguna Sanz, Alejandro J</creatorcontrib><creatorcontrib>Lee, Joon Bok</creatorcontrib><creatorcontrib>Church, Mei Mei</creatorcontrib><creatorcontrib>Andre, Camille</creatorcontrib><creatorcontrib>Lindsey, Laura E</creatorcontrib><creatorcontrib>Doyle, 3rd, Francis J</creatorcontrib><creatorcontrib>Dassau, Eyal</creatorcontrib><title>Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise</title><title>Diabetes technology &amp; therapeutics</title><addtitle>Diabetes Technol Ther</addtitle><description>We investigated the safety and efficacy of the addition of a trust index to enhanced Model Predictive Control (eMPC) Artificial Pancreas (AP) that works by adjusting the responsiveness of the controller's insulin delivery based on the confidence intervals around predictions of glucose trends. This constitutes a dynamic adaptation of the controller's parameters in contrast with the widespread AP implementation of individualized fixed controller tuning. After 1 week of sensor-augmented pump (SAP) use, subjects completed a 48-h AP admission that included three meals/day (carbohydrate range 29-57 g/meal), a 1-h unannounced brisk walk, and two overnight periods. Endpoints included sensor glucose percentage time 70-180, &lt;70, &gt;180 mg/dL, number of hypoglycemic events, and assessment of the trust index versus standard eMPC glucose predictions. Baseline characteristics for the 15 subjects who completed the study (mean ± SD) were age 46.1 ± 17.8 years, HbA1c 7.2% ± 1.0%, diabetes duration 26.8 ± 17.6 years, and total daily dose (TDD) 35.5 ± 16.4 U/day. Mean sensor glucose percent time 70-180 mg/dL (88.0% ± 8.0% vs. 74.6% ± 9.4%), &lt;70 mg/dL (1.5% ± 1.9% vs. 7.8% ± 6.0%), and number of hypoglycemic events (0.6 ± 0.6 vs. 6.3 ± 3.4), all showed statistically significant improvement during AP use compared with the SAP run-in (P &lt; 0.001). On average, the trust index enhanced controller responsiveness to predicted hyper- and hypoglycemia by 26% (P &lt; 0.005). In this population of well-controlled patients, we conclude that eMPC with trust index AP achieved nearly 90% time in the target glucose range. Additional studies will further validate these results.</description><subject>Adult</subject><subject>Blood Glucose - analysis</subject><subject>Blood Glucose Self-Monitoring</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Exercise</subject><subject>Female</subject><subject>Glucose</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hypoglycemia</subject><subject>Hypoglycemia - blood</subject><subject>Hypoglycemia - diagnosis</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Insulin</subject><subject>Insulin - therapeutic use</subject><subject>Insulin Infusion Systems</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Original</subject><subject>Pancreas, Artificial</subject><subject>Sensors</subject><issn>1520-9156</issn><issn>1557-8593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEURi0EoqWwZIsssWEzwY94xt4gVVEolVq1i7C2PPY1cTWxiz0Tyl_gV-MhJaKs_LjHR_f6Q-gtJQtKpProglkwQuWCEE6foVMqRNdIofjzec9Io6hoT9CrUu4IIR1n9CU6YUoJSRg_Rb_WezNMZgwp4uSxifg8j8EHG8yAb020GUzBP8K4xeu4rWdw-Do5qMUMLtgx7AGvUhxzGuprhw2-GCabChyBat7kqYz4Mjp4OLi-RhNjmv7o1g-QbSjwGr3wZijw5nE9Q5vP683qS3N1c3G5Or9q7JKKsYHedSCkVJJK1Vtqqeic6yz0rfC-NZ7UK-6Fot6S3nkHIATIlrcGqOP8DH06aO-nfgfOQu3dDPo-h53JP3UyQT-txLDV39Jet2RZv01VwYdHQU7fJyij3oViYRhMhDQVzUjLJGeMiIq-_w-9S1OOdbqZooKqli0r1Rwom1MpGfyxGUr0HLKuIes5ZD2HXPl3_05wpP-myn8D3uCmKg</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Pinsker, Jordan E</creator><creator>Laguna Sanz, Alejandro J</creator><creator>Lee, Joon Bok</creator><creator>Church, Mei Mei</creator><creator>Andre, Camille</creator><creator>Lindsey, Laura E</creator><creator>Doyle, 3rd, Francis J</creator><creator>Dassau, Eyal</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201807</creationdate><title>Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise</title><author>Pinsker, Jordan E ; Laguna Sanz, Alejandro J ; Lee, Joon Bok ; Church, Mei Mei ; Andre, Camille ; Lindsey, Laura E ; Doyle, 3rd, Francis J ; Dassau, Eyal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-ebd7e58898189bc1c157dd7ceb65ff6af01c13f591fc0bdfdee55e8636ae1d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Blood Glucose - analysis</topic><topic>Blood Glucose Self-Monitoring</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Exercise</topic><topic>Female</topic><topic>Glucose</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hypoglycemia</topic><topic>Hypoglycemia - blood</topic><topic>Hypoglycemia - diagnosis</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Insulin</topic><topic>Insulin - therapeutic use</topic><topic>Insulin Infusion Systems</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Original</topic><topic>Pancreas, Artificial</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinsker, Jordan E</creatorcontrib><creatorcontrib>Laguna Sanz, Alejandro J</creatorcontrib><creatorcontrib>Lee, Joon Bok</creatorcontrib><creatorcontrib>Church, Mei Mei</creatorcontrib><creatorcontrib>Andre, Camille</creatorcontrib><creatorcontrib>Lindsey, Laura E</creatorcontrib><creatorcontrib>Doyle, 3rd, Francis J</creatorcontrib><creatorcontrib>Dassau, Eyal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes technology &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinsker, Jordan E</au><au>Laguna Sanz, Alejandro J</au><au>Lee, Joon Bok</au><au>Church, Mei Mei</au><au>Andre, Camille</au><au>Lindsey, Laura E</au><au>Doyle, 3rd, Francis J</au><au>Dassau, Eyal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise</atitle><jtitle>Diabetes technology &amp; therapeutics</jtitle><addtitle>Diabetes Technol Ther</addtitle><date>2018-07</date><risdate>2018</risdate><volume>20</volume><issue>7</issue><spage>455</spage><epage>464</epage><pages>455-464</pages><issn>1520-9156</issn><eissn>1557-8593</eissn><abstract>We investigated the safety and efficacy of the addition of a trust index to enhanced Model Predictive Control (eMPC) Artificial Pancreas (AP) that works by adjusting the responsiveness of the controller's insulin delivery based on the confidence intervals around predictions of glucose trends. This constitutes a dynamic adaptation of the controller's parameters in contrast with the widespread AP implementation of individualized fixed controller tuning. After 1 week of sensor-augmented pump (SAP) use, subjects completed a 48-h AP admission that included three meals/day (carbohydrate range 29-57 g/meal), a 1-h unannounced brisk walk, and two overnight periods. Endpoints included sensor glucose percentage time 70-180, &lt;70, &gt;180 mg/dL, number of hypoglycemic events, and assessment of the trust index versus standard eMPC glucose predictions. Baseline characteristics for the 15 subjects who completed the study (mean ± SD) were age 46.1 ± 17.8 years, HbA1c 7.2% ± 1.0%, diabetes duration 26.8 ± 17.6 years, and total daily dose (TDD) 35.5 ± 16.4 U/day. Mean sensor glucose percent time 70-180 mg/dL (88.0% ± 8.0% vs. 74.6% ± 9.4%), &lt;70 mg/dL (1.5% ± 1.9% vs. 7.8% ± 6.0%), and number of hypoglycemic events (0.6 ± 0.6 vs. 6.3 ± 3.4), all showed statistically significant improvement during AP use compared with the SAP run-in (P &lt; 0.001). On average, the trust index enhanced controller responsiveness to predicted hyper- and hypoglycemia by 26% (P &lt; 0.005). In this population of well-controlled patients, we conclude that eMPC with trust index AP achieved nearly 90% time in the target glucose range. Additional studies will further validate these results.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>29958023</pmid><doi>10.1089/dia.2018.0031</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-9156
ispartof Diabetes technology & therapeutics, 2018-07, Vol.20 (7), p.455-464
issn 1520-9156
1557-8593
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6049959
source MEDLINE; Alma/SFX Local Collection
subjects Adult
Blood Glucose - analysis
Blood Glucose Self-Monitoring
Diabetes
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - drug therapy
Exercise
Female
Glucose
Humans
Hyperglycemia
Hypoglycemia
Hypoglycemia - blood
Hypoglycemia - diagnosis
Hypoglycemic Agents - therapeutic use
Insulin
Insulin - therapeutic use
Insulin Infusion Systems
Male
Middle Aged
Original
Pancreas, Artificial
Sensors
title Evaluation of an Artificial Pancreas with Enhanced Model Predictive Control and a Glucose Prediction Trust Index with Unannounced Exercise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20an%20Artificial%20Pancreas%20with%20Enhanced%20Model%20Predictive%20Control%20and%20a%20Glucose%20Prediction%20Trust%20Index%20with%20Unannounced%20Exercise&rft.jtitle=Diabetes%20technology%20&%20therapeutics&rft.au=Pinsker,%20Jordan%20E&rft.date=2018-07&rft.volume=20&rft.issue=7&rft.spage=455&rft.epage=464&rft.pages=455-464&rft.issn=1520-9156&rft.eissn=1557-8593&rft_id=info:doi/10.1089/dia.2018.0031&rft_dat=%3Cproquest_pubme%3E2062832205%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061519624&rft_id=info:pmid/29958023&rfr_iscdi=true