Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode

Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2018-07, Vol.46 (1), p.9-22.e4
Hauptverfasser: O'Neill, Patrick R., Castillo-Badillo, Jean A., Meshik, Xenia, Kalyanaraman, Vani, Melgarejo, Krystal, Gautam, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22.e4
container_issue 1
container_start_page 9
container_title Developmental cell
container_volume 46
creator O'Neill, Patrick R.
Castillo-Badillo, Jean A.
Meshik, Xenia
Kalyanaraman, Vani
Melgarejo, Krystal
Gautam, N.
description Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis. •Optogenetic RhoA or GPCR activation drives amoeboid or lamellipodial cell migration•Only the amoeboid mode exhibits rearward plasma membrane flow•Both modes propel adherent cells, but only the amoeboid mode propels suspended cells•Tangential viscous forces at the cell surface drive adhesion-independent migration O'Neill et al. use optogenetic control of two distinct migration modes to address the question of how propelling forces are generated during adhesion-independent cell migration. They show that rearward plasma membrane flow generates tangential viscous forces at the cell-liquid interface to drive the cell forward.
doi_str_mv 10.1016/j.devcel.2018.05.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580718304222</els_id><sourcerecordid>2059046246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-76a258ede8a793c7e7b1ce1717f2e349cd308f45fb5473e8754beada78cb25d03</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIIWeTj5gyDQsRcpfIrUJYDhvAzE6KU9ExS5SmhIokPKDvr3ZeC8eullucDuzA5nEDonuCKY1JfrysHOQl9RTFSFRYVpc4COiZKqJEKQb7kXjJdCYXmETlJa4wwjCh-iI9o0TDLVHKPlCoY2mhGK2z68FNfR7yAVZizm7gmSD2O5HB1sIJdxKuZDgDZ4Vyyg74uVf4xmyjvFKjg4Rd870yc4e3tn6Pftza_Fffnw8265mD-UltdsKmVtqFDgQBnZMCtBtsQCkUR2FBhvrGNYdVx0reCSgZKCt2Cckcq2VDjMZuhqz7vZtgM4m3VF0-tN9IOJf3QwXv87Gf2Tfgw7XWOuGkkzwY83ghiet5AmPfiUjeyzC2GbNMWiwbymWe4M8f2qjSGlCN3HGYL1awp6rfcp6NcUNBY6p5BhF18lfoDebf_8A2Sjdh6iTtbDaMH5CHbSLvj_X_gLB9Wbng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059046246</pqid></control><display><type>article</type><title>Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>O'Neill, Patrick R. ; Castillo-Badillo, Jean A. ; Meshik, Xenia ; Kalyanaraman, Vani ; Melgarejo, Krystal ; Gautam, N.</creator><creatorcontrib>O'Neill, Patrick R. ; Castillo-Badillo, Jean A. ; Meshik, Xenia ; Kalyanaraman, Vani ; Melgarejo, Krystal ; Gautam, N.</creatorcontrib><description>Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis. •Optogenetic RhoA or GPCR activation drives amoeboid or lamellipodial cell migration•Only the amoeboid mode exhibits rearward plasma membrane flow•Both modes propel adherent cells, but only the amoeboid mode propels suspended cells•Tangential viscous forces at the cell surface drive adhesion-independent migration O'Neill et al. use optogenetic control of two distinct migration modes to address the question of how propelling forces are generated during adhesion-independent cell migration. They show that rearward plasma membrane flow generates tangential viscous forces at the cell-liquid interface to drive the cell forward.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2018.05.029</identifier><identifier>PMID: 29937389</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actomyosin - metabolism ; Animals ; cell adhesion ; Cell Adhesion - physiology ; Cell Line, Transformed ; Cell Membrane - metabolism ; cell migration ; Cell Movement - physiology ; endocytosis ; Endocytosis - physiology ; membrane flow ; Mice ; optogenetics ; Pseudopodia - physiology ; RAW 264.7 Cells ; Receptors, G-Protein-Coupled - metabolism ; rho GTP-Binding Proteins - metabolism ; RhoA ; rhoA GTP-Binding Protein ; signaling ; viscous forces</subject><ispartof>Developmental cell, 2018-07, Vol.46 (1), p.9-22.e4</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-76a258ede8a793c7e7b1ce1717f2e349cd308f45fb5473e8754beada78cb25d03</citedby><cites>FETCH-LOGICAL-c463t-76a258ede8a793c7e7b1ce1717f2e349cd308f45fb5473e8754beada78cb25d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580718304222$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29937389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Neill, Patrick R.</creatorcontrib><creatorcontrib>Castillo-Badillo, Jean A.</creatorcontrib><creatorcontrib>Meshik, Xenia</creatorcontrib><creatorcontrib>Kalyanaraman, Vani</creatorcontrib><creatorcontrib>Melgarejo, Krystal</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><title>Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis. •Optogenetic RhoA or GPCR activation drives amoeboid or lamellipodial cell migration•Only the amoeboid mode exhibits rearward plasma membrane flow•Both modes propel adherent cells, but only the amoeboid mode propels suspended cells•Tangential viscous forces at the cell surface drive adhesion-independent migration O'Neill et al. use optogenetic control of two distinct migration modes to address the question of how propelling forces are generated during adhesion-independent cell migration. They show that rearward plasma membrane flow generates tangential viscous forces at the cell-liquid interface to drive the cell forward.</description><subject>Actomyosin - metabolism</subject><subject>Animals</subject><subject>cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Line, Transformed</subject><subject>Cell Membrane - metabolism</subject><subject>cell migration</subject><subject>Cell Movement - physiology</subject><subject>endocytosis</subject><subject>Endocytosis - physiology</subject><subject>membrane flow</subject><subject>Mice</subject><subject>optogenetics</subject><subject>Pseudopodia - physiology</subject><subject>RAW 264.7 Cells</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>RhoA</subject><subject>rhoA GTP-Binding Protein</subject><subject>signaling</subject><subject>viscous forces</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu2zAQJIIWeTj5gyDQsRcpfIrUJYDhvAzE6KU9ExS5SmhIokPKDvr3ZeC8eullucDuzA5nEDonuCKY1JfrysHOQl9RTFSFRYVpc4COiZKqJEKQb7kXjJdCYXmETlJa4wwjCh-iI9o0TDLVHKPlCoY2mhGK2z68FNfR7yAVZizm7gmSD2O5HB1sIJdxKuZDgDZ4Vyyg74uVf4xmyjvFKjg4Rd870yc4e3tn6Pftza_Fffnw8265mD-UltdsKmVtqFDgQBnZMCtBtsQCkUR2FBhvrGNYdVx0reCSgZKCt2Cckcq2VDjMZuhqz7vZtgM4m3VF0-tN9IOJf3QwXv87Gf2Tfgw7XWOuGkkzwY83ghiet5AmPfiUjeyzC2GbNMWiwbymWe4M8f2qjSGlCN3HGYL1awp6rfcp6NcUNBY6p5BhF18lfoDebf_8A2Sjdh6iTtbDaMH5CHbSLvj_X_gLB9Wbng</recordid><startdate>20180702</startdate><enddate>20180702</enddate><creator>O'Neill, Patrick R.</creator><creator>Castillo-Badillo, Jean A.</creator><creator>Meshik, Xenia</creator><creator>Kalyanaraman, Vani</creator><creator>Melgarejo, Krystal</creator><creator>Gautam, N.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180702</creationdate><title>Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode</title><author>O'Neill, Patrick R. ; Castillo-Badillo, Jean A. ; Meshik, Xenia ; Kalyanaraman, Vani ; Melgarejo, Krystal ; Gautam, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-76a258ede8a793c7e7b1ce1717f2e349cd308f45fb5473e8754beada78cb25d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actomyosin - metabolism</topic><topic>Animals</topic><topic>cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Line, Transformed</topic><topic>Cell Membrane - metabolism</topic><topic>cell migration</topic><topic>Cell Movement - physiology</topic><topic>endocytosis</topic><topic>Endocytosis - physiology</topic><topic>membrane flow</topic><topic>Mice</topic><topic>optogenetics</topic><topic>Pseudopodia - physiology</topic><topic>RAW 264.7 Cells</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>RhoA</topic><topic>rhoA GTP-Binding Protein</topic><topic>signaling</topic><topic>viscous forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Neill, Patrick R.</creatorcontrib><creatorcontrib>Castillo-Badillo, Jean A.</creatorcontrib><creatorcontrib>Meshik, Xenia</creatorcontrib><creatorcontrib>Kalyanaraman, Vani</creatorcontrib><creatorcontrib>Melgarejo, Krystal</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Neill, Patrick R.</au><au>Castillo-Badillo, Jean A.</au><au>Meshik, Xenia</au><au>Kalyanaraman, Vani</au><au>Melgarejo, Krystal</au><au>Gautam, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2018-07-02</date><risdate>2018</risdate><volume>46</volume><issue>1</issue><spage>9</spage><epage>22.e4</epage><pages>9-22.e4</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis. •Optogenetic RhoA or GPCR activation drives amoeboid or lamellipodial cell migration•Only the amoeboid mode exhibits rearward plasma membrane flow•Both modes propel adherent cells, but only the amoeboid mode propels suspended cells•Tangential viscous forces at the cell surface drive adhesion-independent migration O'Neill et al. use optogenetic control of two distinct migration modes to address the question of how propelling forces are generated during adhesion-independent cell migration. They show that rearward plasma membrane flow generates tangential viscous forces at the cell-liquid interface to drive the cell forward.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29937389</pmid><doi>10.1016/j.devcel.2018.05.029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2018-07, Vol.46 (1), p.9-22.e4
issn 1534-5807
1878-1551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048972
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actomyosin - metabolism
Animals
cell adhesion
Cell Adhesion - physiology
Cell Line, Transformed
Cell Membrane - metabolism
cell migration
Cell Movement - physiology
endocytosis
Endocytosis - physiology
membrane flow
Mice
optogenetics
Pseudopodia - physiology
RAW 264.7 Cells
Receptors, G-Protein-Coupled - metabolism
rho GTP-Binding Proteins - metabolism
RhoA
rhoA GTP-Binding Protein
signaling
viscous forces
title Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Flow%20Drives%20an%20Adhesion-Independent%20Amoeboid%20Cell%20Migration%20Mode&rft.jtitle=Developmental%20cell&rft.au=O'Neill,%20Patrick%20R.&rft.date=2018-07-02&rft.volume=46&rft.issue=1&rft.spage=9&rft.epage=22.e4&rft.pages=9-22.e4&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2018.05.029&rft_dat=%3Cproquest_pubme%3E2059046246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059046246&rft_id=info:pmid/29937389&rft_els_id=S1534580718304222&rfr_iscdi=true