Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance

Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biology 2018-08, Vol.38 (15)
Hauptverfasser: Duernberger, Yvonne, Liu, Shu, Riemschoss, Katrin, Paulsen, Lydia, Bester, Romina, Kuhn, Peer-Hendrik, Schölling, Manuel, Lichtenthaler, Stefan F., Vorberg, Ina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Molecular and cellular biology
container_volume 38
creator Duernberger, Yvonne
Liu, Shu
Riemschoss, Katrin
Paulsen, Lydia
Bester, Romina
Kuhn, Peer-Hendrik
Schölling, Manuel
Lichtenthaler, Stefan F.
Vorberg, Ina
description Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.
doi_str_mv 10.1128/MCB.00111-18
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042748002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f490f4651caf618122a62a1604d2da2c008f069c84fae768f0e73108e26035ee3</originalsourceid><addsrcrecordid>eNptkc1PFTEUxRujEUR2rs0sXTBw2_nquDCBh3wkEI2RdXPttO_VdNpH24G8vX-4fQwQTFz13pzfPbftIeQDhUNKGT-6XpwcAlBKS8pfkV0KPS-bpu5fv6h3yLsYfwNA20P1luywvuN119Fd8ud7MN4VP9TaGolpWxtXpJUqrnEc0Rp0xWKTfPT2c3E2OblF0OaBZS5icW_SKg9gMfuc-hFzexrMnXHL4tIN08PEQdb9Gpc4N-iGrK1UMAmdVO_JG402qv3Hc4_cnH39ubgor76dXy6Or0pZ8T6Vuu5B121DJeqWcsoYtgxpC_XABmQSgOv8Qslrjaprc6O6igJXrIWqUaraI19m3_X0a1SDVC4FtGIdzIhhIzwa8a_izEos_Z3IK3hFm2zw6dEg-NtJxSRGE6WyFp3yUxQMatbVHIBl9GBGZfAxBqWf11AQ2-BEDk48BCcoz_jHl1d7hp-SykA3A8ZpH0a898EOIuHG-qBD_kUTRfVf6789NKfb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042748002</pqid></control><display><type>article</type><title>Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Duernberger, Yvonne ; Liu, Shu ; Riemschoss, Katrin ; Paulsen, Lydia ; Bester, Romina ; Kuhn, Peer-Hendrik ; Schölling, Manuel ; Lichtenthaler, Stefan F. ; Vorberg, Ina</creator><creatorcontrib>Duernberger, Yvonne ; Liu, Shu ; Riemschoss, Katrin ; Paulsen, Lydia ; Bester, Romina ; Kuhn, Peer-Hendrik ; Schölling, Manuel ; Lichtenthaler, Stefan F. ; Vorberg, Ina</creatorcontrib><description>Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.</description><identifier>ISSN: 1098-5549</identifier><identifier>ISSN: 0270-7306</identifier><identifier>EISSN: 1098-5549</identifier><identifier>DOI: 10.1128/MCB.00111-18</identifier><identifier>PMID: 29784771</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>amyloid ; neurodegeneration ; prion-like ; prions ; protein misfolding</subject><ispartof>Molecular and cellular biology, 2018-08, Vol.38 (15)</ispartof><rights>Copyright © 2018 Duernberger et al. 2018</rights><rights>Copyright © 2018 Duernberger et al.</rights><rights>Copyright © 2018 Duernberger et al. 2018 Duernberger et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-f490f4651caf618122a62a1604d2da2c008f069c84fae768f0e73108e26035ee3</cites><orcidid>0000-0003-3796-3372 ; 0000-0003-0583-4015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048315/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048315/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29784771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duernberger, Yvonne</creatorcontrib><creatorcontrib>Liu, Shu</creatorcontrib><creatorcontrib>Riemschoss, Katrin</creatorcontrib><creatorcontrib>Paulsen, Lydia</creatorcontrib><creatorcontrib>Bester, Romina</creatorcontrib><creatorcontrib>Kuhn, Peer-Hendrik</creatorcontrib><creatorcontrib>Schölling, Manuel</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F.</creatorcontrib><creatorcontrib>Vorberg, Ina</creatorcontrib><title>Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance</title><title>Molecular and cellular biology</title><addtitle>Mol Cell Biol</addtitle><description>Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.</description><subject>amyloid</subject><subject>neurodegeneration</subject><subject>prion-like</subject><subject>prions</subject><subject>protein misfolding</subject><issn>1098-5549</issn><issn>0270-7306</issn><issn>1098-5549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNptkc1PFTEUxRujEUR2rs0sXTBw2_nquDCBh3wkEI2RdXPttO_VdNpH24G8vX-4fQwQTFz13pzfPbftIeQDhUNKGT-6XpwcAlBKS8pfkV0KPS-bpu5fv6h3yLsYfwNA20P1luywvuN119Fd8ud7MN4VP9TaGolpWxtXpJUqrnEc0Rp0xWKTfPT2c3E2OblF0OaBZS5icW_SKg9gMfuc-hFzexrMnXHL4tIN08PEQdb9Gpc4N-iGrK1UMAmdVO_JG402qv3Hc4_cnH39ubgor76dXy6Or0pZ8T6Vuu5B121DJeqWcsoYtgxpC_XABmQSgOv8Qslrjaprc6O6igJXrIWqUaraI19m3_X0a1SDVC4FtGIdzIhhIzwa8a_izEos_Z3IK3hFm2zw6dEg-NtJxSRGE6WyFp3yUxQMatbVHIBl9GBGZfAxBqWf11AQ2-BEDk48BCcoz_jHl1d7hp-SykA3A8ZpH0a898EOIuHG-qBD_kUTRfVf6789NKfb</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Duernberger, Yvonne</creator><creator>Liu, Shu</creator><creator>Riemschoss, Katrin</creator><creator>Paulsen, Lydia</creator><creator>Bester, Romina</creator><creator>Kuhn, Peer-Hendrik</creator><creator>Schölling, Manuel</creator><creator>Lichtenthaler, Stefan F.</creator><creator>Vorberg, Ina</creator><general>Taylor &amp; Francis</general><general>American Society for Microbiology</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3796-3372</orcidid><orcidid>https://orcid.org/0000-0003-0583-4015</orcidid></search><sort><creationdate>20180801</creationdate><title>Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance</title><author>Duernberger, Yvonne ; Liu, Shu ; Riemschoss, Katrin ; Paulsen, Lydia ; Bester, Romina ; Kuhn, Peer-Hendrik ; Schölling, Manuel ; Lichtenthaler, Stefan F. ; Vorberg, Ina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f490f4651caf618122a62a1604d2da2c008f069c84fae768f0e73108e26035ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amyloid</topic><topic>neurodegeneration</topic><topic>prion-like</topic><topic>prions</topic><topic>protein misfolding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duernberger, Yvonne</creatorcontrib><creatorcontrib>Liu, Shu</creatorcontrib><creatorcontrib>Riemschoss, Katrin</creatorcontrib><creatorcontrib>Paulsen, Lydia</creatorcontrib><creatorcontrib>Bester, Romina</creatorcontrib><creatorcontrib>Kuhn, Peer-Hendrik</creatorcontrib><creatorcontrib>Schölling, Manuel</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F.</creatorcontrib><creatorcontrib>Vorberg, Ina</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duernberger, Yvonne</au><au>Liu, Shu</au><au>Riemschoss, Katrin</au><au>Paulsen, Lydia</au><au>Bester, Romina</au><au>Kuhn, Peer-Hendrik</au><au>Schölling, Manuel</au><au>Lichtenthaler, Stefan F.</au><au>Vorberg, Ina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance</atitle><jtitle>Molecular and cellular biology</jtitle><addtitle>Mol Cell Biol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>38</volume><issue>15</issue><issn>1098-5549</issn><issn>0270-7306</issn><eissn>1098-5549</eissn><abstract>Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>29784771</pmid><doi>10.1128/MCB.00111-18</doi><orcidid>https://orcid.org/0000-0003-3796-3372</orcidid><orcidid>https://orcid.org/0000-0003-0583-4015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-5549
ispartof Molecular and cellular biology, 2018-08, Vol.38 (15)
issn 1098-5549
0270-7306
1098-5549
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048315
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects amyloid
neurodegeneration
prion-like
prions
protein misfolding
title Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prion%20Replication%20in%20the%20Mammalian%20Cytosol:%20Functional%20Regions%20within%20a%20Prion%20Domain%20Driving%20Induction,%20Propagation,%20and%20Inheritance&rft.jtitle=Molecular%20and%20cellular%20biology&rft.au=Duernberger,%20Yvonne&rft.date=2018-08-01&rft.volume=38&rft.issue=15&rft.issn=1098-5549&rft.eissn=1098-5549&rft_id=info:doi/10.1128/MCB.00111-18&rft_dat=%3Cproquest_pubme%3E2042748002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042748002&rft_id=info:pmid/29784771&rfr_iscdi=true